Noel Hernandez Gomez, Paleontologist in Training

A photo of Noel Hernandez sitting on top next to a river coming from a waterfall in the middle of a valley in Mackay Idaho during a field work excursion.

Born in Caracas, Venezuela, I am an aspiring scientist from birth who loves the outdoors and hopes to make a difference in the world. When I’m not doing research, I prefer to spend my time going out and seeing new things, whether that’d be a new nature trail, or a fun night with friends, there is always something to enjoy about life, which is why I have a strong passion for helping the world and all its beauty.

I am currently an undergraduate student at the University of South Florida, on my senior year for a Geology B.S., I have plans to go to Grad school in the future, and hopefully attaining a PhD as my career progresses. My focus is paleontology, and all the research I have done so far is on invertebrate animals, more specifically on crinoid evolution and echinoderms. I am currently performing research on a growth series of eight samples of Erisocrinus typus lead by Whitney Lapic and with the help of Dr. Sarah Sheffield and a previous study of hers. We mostly focus on reading past studies from many authors that talk about the species we are dealing with and examining samples to understand how these animals used to grow. Our goal is to have a publication on this by the end of the year. My goal is to keep doing research such as this for the foreseeable future and perhaps focus on other part of paleontology as well, not just confined to invertebrates.

As discussed previously, my main goal as a scientist is to make a difference in the world, and I chose to do so by studying our past. Growing up, I was surrounded by a country drowned in conflict and turmoil, I took these experiences as motivation to change this, not just for my country, but for the entire world. The change that needs to occur for a better tomorrow, starts with the right information, and science is the pursuit of this information, all facets of science are bound by this uniting principal. My work does not have obvious major implications for our society, but understanding the development of ocean creatures, even those of hundreds of millions of years ago can have contextual importance to our understanding of the oceans today and how global climates have changed in the past. Paleontology focuses on gaining an understanding of the past so that we can have an idea of what our future holds.

A contribution that I hope to make to the scientific community is to facilitate the exchange of information between English speaking scientists and Spanish speaking ones, since my native language is Spanish, and I am fluent in it, my hope is to broaden the range in which paleontology can be talked about and end the age of Eurocentrism for science.

For any up-and-coming scientist, whether they are paleontologists, or any other kind of scientist, I would strongly advise to never limit yourself due to your expectations of what you should be. Scientists are talked about as these unreachable and mighty individuals that hold the infinite knowledge of everything, and this notion can make it difficult sometimes to get in contact with professors or mentors, but the reality is that scientists are just humans, who aren’t perfect, and are just as capable as anyone else, don’t have reservations about reaching out to the members of your college or the faculty of your university, there is always a need for bright minds.

Brittany N. Price, Paleoclimatologist

Brittany, a brown-haired woman, wearing PPE while working on a gas bench in Northern Illinois Universities Stable Isotope Laboratory.
Brittany wearing personal protective equipment while working on a gas bench in Northern Illinois University’s Stable Isotope Laboratory

Similar to many children, I was always fascinated by volcanos! The dynamic way in which they change the landscape inspired me to pursue a degree in geology. While this interest and appreciation of volcanoes has never faded, a new specialty piqued my interest in my second year at university – Paleoclimatology. The idea that the past climate history of the earth could be reconstructed over millions of years by analyzing the chemical makeup of microfossils preserved in oceanic sediments quickly made me alter my focus, and subsequently my entire career trajectory! I spent the next three years working in the Paleoclimatology and Stable Isotope Geochemistry labs at the University of Miami to prepare forams (microfossils) from the Gulf of Papua (off the coast of Papua New Guinee) for stable oxygen and carbon analysis to better understand the influence of sea level, as well as variability in the East Asian Monsoon system in the western Tropical Pacific.

Fast forward almost 15 years and I am nearing the completion of my PhD. I now focus on terrestrial records that I use to assess variability in hydroclimate dynamics (i.e. rainfall) over the Holocene around the Pacific Ocean Basin. My current projects include a wide variety of locations and proxy data, from establishing chronologies of glacial advancement and recession in the South-Central Chilean Andes, to carbonate isotope reconstructions from small lake basins in Guatemala and Nicaragua. Moving forward I hope to work on better constraining the roles that aridity and convection play in the global hydroclimate system through the use of stable isotopes, as well as to reconstruct better land-based temperature proxy records. It is truly amazing to witness the analytical advances that have been made even during my relatively short career as a geoscientist!

Brittany, wearing full PPE including a face shield, working to decant hydrofluoric acid from samples used for cosmogenic chlorine-36 dating.

If I were to give one piece of advice to aspiring geologists it would be that no two paths look that same, so it is best not to compare yourself to others! There are so many interesting careers in our discipline, and it is alright to explore them. After I completed my undergraduate education, I continued on for my Masters in Geology. While I had wanted to work on terrestrial sediment cores, I ended up working on a basin analysis project using seismic reflection data. Having this skill set opened avenues that I hadn’t originally considered for myself, and led to a job offer and a career working in the oil and gas industry for 8 years. However, I realized that I was still truly inspired and passionate about Paleoclimatology, and that I still had so much more I wanted to learn. I decided to leave the workforce, and as a more mature student (at least 10 years older than the average age of my cohort) I entered the PhD program at Northern Illinois University. Returning to the world of Paleoclimatology has been one of the best and most fulfilling experiences of my adult life, even if the path I took to get here was a bit longer than most.

Brittany, woman in a wide-brimmed hat and fleece jacket, on a snow-covered field in front of a small cirque glacier
Brittany on a snow-covered field in front of a small cirque glacier.

Benjamin Keenan, Biogeochemist

Photo showing Benjamin in the foreground with a volcano erupting the background
Benjamin during an eruption of Volcán de Fuego or Chi Q’aq’ in Guatemala

Hello everyone. I am a biogeochemist who uses ancient molecules found in lake sediments to investigate interactions between humans and their environment. I am finishing a PhD in biogeochemistry at McGill in Montréal, Québec. I like skiing and ice skating, jazz, and when the earth is not frozen over I spend my lot of time bike-camping and swimming outdoors. I moved to Canada after a degree in geological sciences in England/California and working as an environmental consultant, a water engineer, and as a research assistant at the Complutense University of Madrid.

My current research looks at how the lowland Maya interacted with their environment and how they responded to climate change over 3,300 years. I take samples from Central America, extract organic molecules known as lipids and analyse them using different methods. I use plant waxes as a proxy for vegetation and hydrological change (how wet or dry it was) in the past, polycyclic aromatic carbons (from the incomplete combustion of carbon) as a proxy for biomass burning the past, and faecal stanols as proxies for population change.

My first chapter shows that population declines in the southwest Maya lowlands are associated not only with drought at multiple times throughout history, but also with anomalously wet periods, and has also highlighted potential efforts to reduce soil erosion as well as the use of night soil (human waste) as fertiliser in the past. This work attracted a lot of media interest, including from the CBC, Haaretz, El Mundo, and Archaeology Magazine, and will be vulgarised in the magazine Le Climatoscope. It also forms part of the chapter “Climate Change and Variability in the Protoclassic” in Remaking Maya Civilization, Social and Political Transformations in the Protoclassic Maya Lowlands.

Benjamin wearing a striped shirt, shorts and wellington boots in a tree over a cliff reaching out to collect leaves for analyses
Benjamin in the field in Guatemala collecting leaves for plant wax analyses

Now I am in the process of writing my thesis, which I will submit in December, and working with a digital artist to create a virtual Itzan, the archaeological site where the samples I have analysed were taken from. I think it is important for people to know that ancient societies were affected by climate change and by looking at responses to environmental change in the past how we might better understand anthropogenic climate change today and in the future. I am particularly interested in migration as climate change adaptation and am a member of the McGill Refugee Research Group.

Most students are fortunate enough to be on campuses with interesting seminars and public lectures in different departments that you can attend and make connections between your interests, your research and what is happening in different areas and at different scales. This is interesting and can be fruitful, and helps prevent you from getting stuck in the rut of your niche bit of research. Attending talks in anthropology, geography, and social sciences has given me new perspectives for my thesis, where the question I am researching requires an interdisciplinary approach.

Figure from Keenan et al. (2021) showing population change in the context of palaeoclimate and changes in pollen (a proxy for deforestation).

Patty Standring, PhD Student at University of Texas at Austin studying paleoceanography using benthic foraminifera

Hello! I am Patty, and I am a 2nd year PhD student at the University of Texas at Austin (UT). I am also an Air Force veteran. I worked as a Dari Linguist during my 10 years in the military before returning to school to get a bachelor’s degree at UT in geophysics.

Photo of me in front of my microscope at the Institute for Geophysics.

What research are you doing for your PhD? I am studying the paleoceanography of the Gulf of Mexico and the Caribbean during the Eocene and Oligocene epochs (~30-40 million years ago). I look for tiny fossil shells from organisms called foraminifera (forams for short) in deep-sea sediments, and then analyze the isotopes in the shells. I specifically study the forams that live on the seafloor, so they are referred to as benthic forams, whereas planktic forams float in the water column. Forams are single-celled organisms and build their calcite shells from elements in the seawater, essentially recording what seawater conditions were like when they were alive and giving us information about the source of water masses, ocean circulation, and climate changes through time. When forams die, their shells are incorporated into deep-sea sediments, so all we have to do is dig up old ocean mud and then we have a record of what the ocean was like a long time ago.

The time period I am studying is important because the global climate was changing from very warm (much warmer than today) to very cold conditions, and ocean circulation was changing. Atmospheric carbon dioxide was much higher than today but declining, which cooled the climate enough that ice sheets developed on Antarctica. As a result of many of these changes certain groups of foraminifera went extinct. I am trying to find out how these climate and ocean changes occurred in the Gulf of Mexico and the Caribbean Sea in the hopes that it will help us understand how modern ocean circulation developed and how it may change in the future as atmospheric carbon dioxide levels continue to increase.

Image of 10 Nuttallides truempyi foraminifera to be analyzed for isotope data. My fingers provide some scale of how small the shells can be.


Why did you leave the military to pursue science? I joined the military at age 19 due to lack of employment opportunities and an inability to pay for college. After enlisting, the Air Force trained me in Dari, one of primary languages spoken in Afghanistan. I was a Dari Linguist for six years and reenlisted during my deployment to Afghanistan for four more years. Learning Dari not only gave me a unique appreciation for the Afghan culture but also exposed me to broader geopolitical issues I was previously sheltered from.

Image of me shortly after reenlisting while deployed to Bagram Air Base, Afghanistan, in Dec 2011.

Growing up in southern California, I am familiar with earthquakes, but have been fortunate to not have been significantly affected by them. While deployed to Bagram Air Base in Afghanistan, a northern province in the country experienced a larger magnitude earthquake, resulting in significant damage and casualties, with an entire village swallowed by a landslide. It struck me that a similar magnitude earthquake in the US would not have resulted in the same level of devastation primarily due to the emergency infrastructure of the US and building safety requirements. It made me reconsider what my efforts in Afghanistan were actually resulting in and whether or not I could have a more positive impact on the people I was trying to help.

After my deployment, I began considering what options I might have when my enlistment was up. I decided I wanted to pursue a science career, with the original goal of studying earthquake hazards. I hoped that my military experience would aid in increasing earthquake preparedness and mitigation efforts in countries like Afghanistan.

Me aboard the R/V Brooks McCall in Galveston Bay, Texas, during the Marine Geology Geophysics Field Course in 2018.

Why did you decide to study paleoceanography? After my second enlistment was up in 2015, I moved to Austin and went to Austin Community College (ACC) in preparation for applying to the University of Texas at Austin. While at ACC, I participated in a summer research program where I worked on a group project in a lab studying the permeability and porosity of different types of rocks (how much fluid can flow through certain types of rocks). This experience helped solidify my desire to study geology at UT and gave me confidence in my ability to conduct scientific research. It also instilled in me the importance of promoting participation of 2-year college students in scientific research.

My original goal was to study earthquakes and earthquake hazard mitigation, but my participation in UT’s Institute for Geophysics (UTIG) Marine Geology and Geophysics Field Course introduced me to marine geology, oceanography, and – more importantly – forams. I was fortunate enough to be able to work on an undergraduate research project with UTIG Research Scientist Dr. Chris Lowery using foram ecology to study sea level change along the Texas Gulf Coast over the last 10,000 years. That project, along with Dr. Lowery’s mentorship, gave me the confidence to pursue a graduate degree studying ancient climate and oceanographic changes in the hopes that they will help us understand modern ocean and climate stability and potential impacts on vulnerable communities.

Me graduating from home in May 2020. Like many things in the last two years, the in-person graduation ceremony at UT was cancelled because of the pandemic.

Do you have any advice for aspiring scientists? I have a non-traditional path toward science. Although it took me much longer to get to where I am, I believe my experiences make me a better scientist and a more well-rounded individual. I come from a low-middle income socioeconomic background, I served in the military in a completely different career field, and I attended community college before enrolling at UT Austin. These are just a few of what some people might consider obstacles that I overcame to get to where I am now. However, I am who I am because of where I come from, what I have sacrificed for my education, and the path I took to get to this point. As an older student, I feel much more certain in what I want from my education and in my future scientific career. As a military veteran, I have a socio-political perspective that informs my research goals. So, my advice to aspiring scientists is do not be afraid of a non-traditional path. Things like prior work experience and a community college education are benefits because they make you a versatile individual, and able to adapt to changes in ways that students on a traditional path may not be able to. Take advantage of opportunities that may become available to you because you never know where they will take you or how they might change your perspective or your research path.

What do you want your future to look like? My military experience helped me realize how important it is to me to have a positive impact on the lives of others. After receiving my PhD, I hope to find a position working for a government agency like the US Geological Survey or the National Ocean and Atmospheric Administration. I would like to work on scientific research that informs policy decisions pertaining to climate change impacts, particularly for marginalized communities that are typically more vulnerable to climate change and are underserved with respect to mitigation efforts.

Note from the TS Team: Patty has also written a post on the Student Veterans Research Network that we encourage you to read. 

Charlotte Hohman, Paleontology Undergraduate and Student Researcher

Charlotte Hohman in the lab making a list of important features on a dromaeosaurid upper jaw (maxilla) bone for her research.

My name is Charlotte Hohman, and I’m a 3rd-year undergraduate at Montana State University.  I am majoring in earth sciences, with a concentration in the field of paleontology. There are  many different aspects of the field that one can be involved in, including but not limited to  research, fossil preparation, education, outreach, fieldwork, digital reconstruction, and art. I  love many different aspects of the field and am using my student years to gather experience in  those aspects and learn from a variety of mentors to prepare me for a career in the field. 

Charlotte Hohman in the lab with a museum curator comparing a broken hip bone of an unidentified hoofed animal to that of Camelops

I first became aware of paleontology as a scientific field in 2018 when I began volunteering at  the Western Science Center (WSC). In California, you need 40 hours of community service to  graduate high school, and I knew the museum was taking volunteers, so I signed up. I started  as a docent the summer before my senior year. In September 2018, the director had me  identify some Ice Age rodent fossils. He asked me to find a way to categorize the fossils, and I  ended up coming up with a categorization method meant to make predictions about the  ancient environment of the site during the Ice Age. The director thought the method looked  interesting and asked me if I wanted to present at a conference. I presented my preliminary  results my senior year of high school at the 2019 Geological Society of America Cordilleran  meeting, where I realized that I definitely wanted to pursue paleontology professionally.  

Since then, I have continued to do research. I conduct student research at Montana State (and  its affiliated museum Museum of the Rockies (MOR)) and the Western science center. I have  co-authored two publications: one on the Pacific mastodon’s (Mammut pacificus) geographic  range (McDonald et al., 2020), and one on the prehistoric horses of the Cajon Valley Formation  of Southern California (Stoneburg et al., 2021). My three in-progress manuscripts focus on how  dromaeosaurids (raptors) grew into adults, horses in southwestern North America during the  Ice Age, and my continued work on the aforementioned rodents! 

Figure 1: the upper jaw of a Pacific mastodon (Mammut pacificus) from eastern Montana. This jaw tells us that this species of mastodon lived further east than we previously thought. From McDonald et al., 2020.
Figure 2: Teeth from horses that lived in Southern California around 18.0–12.7 million years ago. From Stoneburg et al., 2021.

But as I mentioned, paleontology is so much more than research, and I am involved in multiple  other aspects of the field as well. I have been able to go on digs in New Mexico in Cretaceous  rocks (79 million years old), and in Southern California in Miocene rocks (15 million years old). I  prepare fossils at both the MOR and WSC, and have been fortunate enough to clean the fossils  of whales, sauropods, bison, and more!  

Charlotte Hohman in the lab taking photos of a fossil in a plaster jacket on a cart to build a 3D photogrammetric model.

At the WSC, I make casts, molds, storage cradles, and create 3D models of fossils. All these  lab skills are important for the sharing of research— open-access digital models allow  researchers from around the globe to view your specimens. Casts and 3D prints are great for  outreach and education. I believe that sharing the science is equally as important as doing it,  which is why I am also active in scicomm, or science communication. Science communication  can be online, like on social media, or in-person, like at outreach events. For the WSC, I am the  illustrator of their children’s book series on scientific papers for kids. I run my own educational  account on Instagram, along with managing social media for other paleontology-focused  organizations. Many people have a natural interest in prehistoric animals, so I use science  communication about prehistoric life as a way to draw people in and introduce them to many  different concepts within earth science and biology. 

I plan on doing a Ph.D. when I am done with my bachelor’s and would like to work in a  museum setting one day, to be able to continue to do research, while continuing to share and  teach others about earth history.  

Charlotte Hohman at an outreach event talking to a couple with lots of ice age fossils  laying out on a table in front of her
Charlotte Hohman at an outreach event talking to a couple with lots of ice age fossils laying out on a table in front of her


Charlotte Hohman stands in front of badlands dressed for fieldwork, including hat and  backpack
Charlotte Hohman stands in front of badlands dressed for fieldwork, including hat and backpack


Charlotte Hohman sits using a mallet and chisel on rock surrounding bone at a field site  in the desert
Charlotte Hohman sits using a mallet and chisel on rock surrounding bone at a field site in the desert


Charlotte Hohman uses an air scribe on the rock surrounding ribs of a fossil bison  skeleton to free the ribs
Charlotte Hohman uses an air scribe on the rock surrounding ribs of a fossil bison skeleton to free the ribs


Charlotte Hohman stands on a bench inside a museum helping paint a mural of a  Cretaceous forest with two other people
Charlotte Hohman stands on a bench inside a museum helping paint a mural of a Cretaceous forest with two other people


Stoneburg, B. E., McDonald, A. T., Dooley Jr, A. C., Scott, E., & Hohman, C. J. (2021). New  remains of middle Miocene equids from the Cajon Valley Formation, San Bernardino National  Forest, San Bernardino County, California, USA. PaleoBios, 38. 

McDonald, A. T., Atwater, A. L., Dooley Jr, A. C., & Hohman, C. J. (2020). The easternmost  occurrence of Mammut pacificus (Proboscidea: Mammutidae), based on a partial skull from  eastern Montana, USA. PeerJ, 8, e10030. 

Kelsey Jenkins, PhD Candidate

I’m Kels, and I’m a PhD Candidate at Yale University in the Department of Earth and Planetary Sciences. I completed my undergraduate in Geology and Geophysics at Louisiana State University, followed by an M.Sc. in Biological Sciences at Sam Houston State University.

What was your path into science? If you ask any vertebrate paleontologist this question, the majority will say, “Uhh, I was five years old once.” I stopped asking other paleontologists because the answer is so predictable, and it’s my truth as well. 

I am from Houma, Louisiana, a region of the country that is certainly not known for its fossils or for an exceptional educational system. Luckily, I had the support of my parents who encouraged their daughter’s unusual fascination with fossils. But, when college came around, I was clueless on how to get an education in paleontology…it’s not as if there was a paleontology degree. I chose a big state school, LSU, because I thought it would have the most resources available to me, and I could figure it out from there. I initially majored in anthropology, thinking that’s what I needed to work on dinosaurs (wrong!), but by luck I signed up for a historical geology class as an elective. The first class covered the history of the earth and the fossil record. I changed my major shortly after to geology, and I navigated my way through the department until I met my first mentors in paleontology, Judith Schiebout and Suyin Ting. They gave me a job in the museum collections cataloging a huge donation of mammal fossils, and I spent two years getting hands on experience and teaching myself basic anatomy and taxonomy. Following that, Patrick Lewis, my M.Sc. advisor at SHSU, offered me a project on a strange little reptilian creature from the Triassic of South Africa which fueled my current love of fossil reptiles, reptilian evolution, and dentition. I’m still working on reptile evolution and functional morphology now in my PhD with Bhart-Anjan Bhullar.

What is your research about? Imagine every reptile you’ve ever heard of, living and extinct: lizards, snakes, turtles, dinosaurs, alligators, mosasaurs, pterodactyls. Now, imagine the grandpa that unites them all, the original reptile ancestor. I research the creatures that lead up to that original reptile ancestor. Those animals represent some of the first widespread colonization of land by tetrapods (four-legged animals), and they preserve some of the first instances of important adaptations seen in modern reptiles. That part of the reptilian lineage holds clues about how to become an effective land animal following the initial embargo from water onto land by more fish-like creatures.

What are your hobbies and interests outside of science? I’m still figuring that one out. I enjoy cooking, hiking, crochet, writing, and spending time with my friends, but it’s not always easy to separate myself from work and research. When you pursue science, you’re pursuing a passion, and you don’t always want to take a step back. But, it’s important to take breaks and stretch your legs, though telling yourself that is sometimes easier said than done. If I can give students any piece of advice: you definitely need to take breaks. Get a hobby. Get several. Find out what else you might enjoy too.

Meet the Museum: Dino Parque Lourinhã

Linda and guest blogger David Kroeck,

During a recent field trip (August 2021), we visited the Dino Parque Lourinhã in western Portugal, approximately 50 km north of Lisbon. Dino Parque Lourinhã is open every day except on holidays and tickets currently cost 9,90 € for children, 13 € for adults, but you can get your tickets at a lower price if you book online [Fig 1].

Fig. 1: Entrance of the Dino Parque Lourinhã with Supersaurus lourinhanensis, a sauropod (long-necked dinosaur) named after the town of Lourinhã.

The park consists of a large outdoor area showcasing life sized dinosaur reconstructions, a small museum as well as an activities hall.

The main part of the park consists of an outdoor space, divided into four zones highlighting the terrestrial fauna of the Paleozoic, Triassic, Jurassic and Cretaceous. A fifth area (called sea monsters) displays a range of marine creatures from different periods, from Jurassic ammonites to Eocene manatees [Fig 2]. A large board near the entrance shows a geologic timescale, depicting the main transitional events and examples of typical fauna and flora for each period [Fig 3]. Five paths then wind through a dense pine forest, hiding even the largest dinosaurs surprisingly well until you stand right in front of them – you never know what lurks behind the next group of trees. The natural cover also provides shade on hot sunny days. Arrows give visitors a chance to walk through the zones in chronological order to experience the evolution of the prehistorical fauna.

Fig. 2: Liopleurodon, an ancient marine reptile belonging to a group called pliosaurs
Fig. 3: Panel showing the geological timescale, including typical fauna and flora and major events as well as the paleogeography.

All displays come with explanations in English, Portuguese, French and Spanish, giving a brief overview of each creature, where fossils have been found, when it lived, information about its diet and hunting strategies, and more. These signs also include pictures of the actual fossils that can be compared with the reconstruction.

The vast majority of reconstructions is rather up to date with the scientific literature; a large number of theropods is shown with a variety of feathers for example [Fig 4]. It is clear that such huge displays cannot be re-done with every new paper that is being published on a certain species, but overall, we found the scientific accuracy of the models impressive. This is certainly due to the very recent opening of the park in 2019. We highly recommend a visit to the park to see brand new dinosaur models. While dinosaurs are, of course, the main attraction of this place, you will also find reconstructions of many different prehistoric animals, such as invertebrates, amphibians, marine reptiles and pterosaurs. All reconstructions were made in dynamic poses, and this artistic choice makes them look alive – guaranteeing great photos [Fig 5]. In total there are more than 180 models.

Fig. 4: Velociraptor, a small, feathered theropod found in central Asia, belonging to a group called dromaeosaurids, also commonly known as ‘raptors’.
Fig. 5: Pterosaurs nesting in a tree in front of the Dino Parque.

For all the very young paleontologists the park has much to offer. Several mini-playgrounds are scattered throughout the exhibits and paleontology is presented in a child friendly manner with a diversity of educational activities and shows. There is for example a sand box in which a plesiosaur replica fossil is hidden so that playing children can excavate it themselves. We also noticed that the only stairs in the entire park are used to access a platform near the head of Supersaurus, a very large sauropod. The rest of the park uses slopes and is thus wheelchair accessible and lots of benches and picnic tables are distributed throughout the entire park so the next place to rest is never far away.

The museum focuses on the rich local dinosaur fauna found in the area, such as a nest of Lourinhanosaurus eggs with embryos inside, and Torvosaurus remains. The museum also explains the local geology and how the area looked like during the Jurassic; it was a meandering river/delta system located in the Lusitanian Basin. Both alluvial and marine fossils are abundant in the sedimentary rocks. More on the geological setting of this area will be covered in a separate blog post where we describe our own fossil hunting efforts in Portugal. The museum also provides an insight into paleontological excavation methods and hosts the preparators’ laboratory, so you can watch people work on newly discovered fossils in real time through a large window [Fig 6].

Fig. 6: Ongoing preparation in the live lab of unidentified sauropod vertebrae found in Lourinhã.

We received a little tour behind the scenes of the park and talked to the preparators who showed us their current projects and were excited to explain the implications of their latest finds. Since these were of course still unpublished, we had to promise to keep everything secret and thus can’t talk about it. You’ll have to keep an eye out for publications on fossils from that area, it’s exciting stuff! Taped to the window to the preparators’ lab was a little poster saying the preparators accept (unpaid) interns/volunteers and people who are looking for thesis projects, so if you are curious about the topic, and excited about learning how to prepare dinosaur or other fossil material, you can apply for an internship there [Fig 7]. Our tour behind the scenes also included very interesting conversations with some of the people who worked on the life-sized dinosaur reconstructions. We got to observe their work for a little bit: they were in the process of creating a copy of a Torvosaurus gurneyi skull replica [Fig 8].

Fig. 7: Information poster for people interested in short or long-term training in preparation techniques, including theses and Erasmus+ mobilities.
Fig. 8: Left: Skull of Torvosaurus, the largest theropod of Europe; right: Preparator working on a mold of the Torvosaurus skull to create a copy of it.

Even without the tour behind the scenes the Dino Parque is definitely worth a visit. Here are some additional impressions of our visit:

Fig. 9 Explorer’s tent with, among other things, geological maps of the area, a poster displaying important dinosaurs from Europe and a globe showing, quite accurately, how the Earth looked like in the Upper Jurassic.
Fig. 10: Supersaurus with two small pterosaurs on its neck. With 45 m length, this model is the largest of the Dino Parque.
Fig. 11: Triceratops stealing Linda’s hat.
Fig. 12: Two Deinonychus stalking their prey. Like their Asian relatives Velociraptor, the North American Deinonychus belonged to the dromaeosaurids (‘raptors’).
Fig. 13: David and the large pterosaur Geosternbergia, falsely labeled Pteranodon (to which it was originally assigned)
Fig. 14: Triceratops skull.
Fig. 15: Lourinhasaurus, a sauropod named after the town of Lourinhã. Linda as a scale.
Fig. 16: Allosaurus with its prey, a stegosaurus. Notice the two juvenile Allosaurus in the bottom part.
Fig. 17: A happy Ankylosaur, an armored-skinned dinosaur.
Fig. 18: Tanystropheus, a long necked aquatic reptile from the Triassic in Europe and Asia. In the background you can see the ancient crocodile Sarcosuchus, a Tyrannosaurus rex and an Ankylosaurus.
Fig. 19: Linda and David unimpressed by the Dilophosaurus’ attempt to threaten them.

Matthew Inabinett, Appalachia CARES/AmeriCorps service member; assistant collections manager at the Gray Fossil Site & Museum

Tell us a bit about yourself

I’m a vertebrate paleontologist currently living in Johnson City, Tennessee. I graduated from East Tennessee State University (ETSU) with my master’s degree in paleontology in May 2020. While I was a student at ETSU, I had a graduate assistantship position in the fossil collections at the Gray Fossil Site & Museum (GFS), which I’ve fortunately been able to continue since November 2020 thanks to a position serving at GFS through AmeriCorps. Prior to coming to ETSU for graduate school, I earned my bachelor’s degree in geology from Amherst College in Amherst, Massachusetts, in 2018. As a student at Amherst, I worked all four years as a docent in the Beneski Museum of Natural History — as you can probably tell, I really love natural history museums and want museum work to be a core component of my future. 

Image 1: Me in collections at the Gray Fossil Site & Museum. I am holding the 19th thoracic vertebrae of the Gray Fossil Site’s mastodon, which is very likely a new species. The left and right hindlimb bones (femora, tibiae, and fibulae) are on the cabinet behind me. (August 2021)

How did you get interested in science?

For as long as I can remember, I’ve been very interested in animals, and from about the age of four that interest grew to include fossil animals. Through reading lots of books and watching science shows as a little kid, I became increasingly fascinated by animals, in particular dinosaurs. Even as a young kid, I was always pretty interested not just in the animals themselves (e.g., which dinosaur was the biggest or coolest-looking) but in how they lived and what their world was like, and how they evolved with changing ecosystems, which are definitely interests that have only continued to grow as I’ve studied paleontology professionally. 

I should also point out that in addition to reading books and watching television programs about nature and paleontology, some of the most critical sources for fueling my interest in science were family trips to zoos, aquariums, and museums. There really isn’t anything as fascinating as getting to see live animals or real fossils in person — now just as much as when I was an elementary schooler — and these places gave me a real-life look at research and conservation in action. If I can hop on a little soapbox for a moment, I just want to say that over the past year with the COVID-19 pandemic, places like these — which are generally operating on tight budgets anyway — took a serious financial hit, and if you’re in a position where you are able to support zoos, aquariums, museums, or similar science education venues in your area, please do! These are the places that not only push forward our knowledge of life on Earth and our ability to conserve it, but also can inspire people to become scientists themselves or to be more supportive of science-based causes and issues, and as such represent something really valuable in our society.

What kind of work do you do?

My research as a graduate student and since has focused on prehistoric elephants, in particular on mastodons — an extinct family similar to but only distantly related to the living elephants, and characterized most recognizably by the conical cusps on their teeth. Mastodons evolved in Africa and spread to Eurasia and eventually, about 16 million years ago, to North America where they survived until about 12,600 years ago and were an important part of large mammal communities across the continent. I am interested in the taxonomy, evolution, and lifestyles of mastodons in North America, particularly in the southeastern US. My thesis focused on (re)describing five mastodons from the Pleistocene (ice age) of coastal South Carolina, including the two individuals used to make the skeletal mount on display at the Beneski Museum. These mastodons showed some features like relatively large tusks in their lower jaws and really broad molars that are toward the extreme end of the spectrum for their species. I’m currently involved in some other projects along similar lines, looking to quantify variability in mastodon molars and particularly in the presence/absence of tusks in the lower jaw. 

Image 2: The American mastodon mount (along with other creatures!) at the Beneski Museum of Natural History at Amherst College. The skeleton and upper teeth are from one individual, the lower jaw with its teeth and tusks are from a second; the skull, upper tusks, and pelvis are reconstructed. These specimens were found in South Carolina in the 1860s. Notice the tusks in the lower jaw — they are the largest I’ve tracked down in any American mastodon. (February 2020)

My position at the GFS is in collections, which I think is a really wonderful way to experience the museum world. Basically, this is a position that involves the storage, cataloguing, accessioning, and upkeep of fossils once they’ve been excavated and prepared, and assisting researchers and students with access to the specimens. I’ve had to learn a lot about archival materials and practices to ensure long-term stability of specimens, as well as how to document specimen information, loans, research access requests, and other important information. I find it an especially exciting career path because of the opportunity to look at all the fossils in the collection up close (it’s done wonders for my osteological knowledge), and the fact that the Gray Fossil Site, which unsurprisingly dominates our collection, is both incredibly rich and the only site of its age (Early Pliocene, about 4.8 million years ago) in Appalachia means that many of the fossils I get to handle and house represent species new to science! 

How does your research contribute to understanding paleontology?

Mastodons were a long-lived group that entered North America about 16 million years ago and survived here until about 12,600 years ago at the end of the last ice age; in that time they were found across the whole continent and were important parts of large mammal communities, so understanding their natural history helps paleontologists form a better picture of what was going on in North America more broadly. Even though mastodons are really common ice age fossils in most of North America, the first 15 million years or so of their history on the continent is not well-understood, and even comparatively well-studied ice age mastodons have lots of unanswered questions. I’ve focused especially on mastodons in the Southeast because it’s an area where they are common but generally not as well-studied as other places like the Midwest and Great Lakes region, and only by describing and studying more specimens from comparatively understudied time intervals and places can paleontologists begin to piece together what variation exists in mastodons and what it might mean. It’s important to tease apart what kinds of variability indicate differences between mastodon species (and when and how different species might’ve separated from each other), versus adaptations to particular environmental conditions over time, versus the individual variation present in any species. The environmental aspect is interesting given the ongoing investigation into the (probably very substantial) role rapid climate change at the end of the ice age had in the extinction of mastodons and other large mammals; understanding how mastodons themselves changed in response to earlier climate changes might help us better understand why they went extinct at the end of the ice age, and perhaps what that might mean for their modern elephant relatives. 

Compared to research, working in natural history collections might not seem like it contributes as much to answering questions or spreading knowledge about paleontology, but I think that it is actually a great way to do both of those. Without well-maintained collections, conducting research becomes much more difficult, so by making sure that materials in collections at GFS are well-housed and well-maintained, catalogued, accessioned, properly labelled and documented, and accessible to researchers (who have filled out their research access request paperwork beforehand!) I’m playing my part to further scientific progress at this remarkable site and in the field as a whole. The institution outlives the individual, and so I hope that by always adhering to best practices in collections and treating the tasks with care, our specimens will have a better chance of surviving in perpetuity. Additionally, it’s not only research that is benefitted by a well-maintained fossil collection; public outreach can be as well. When it comes to choosing fossils for display and interpretation, collections staff are often going to be indispensable resources when it comes to considerations both aesthetic (e.g., what specimens are the most striking?) and functional (e.g., how stable will this fossil be out of collections in a display case, and is predisposed to fragility due to its curation history?). As I got my start in museums as an educator, I try to keep things like this in mind at GFS, which may be coming in handy soon as we begin the process of revamping our exhibits.

What are your data and what do you study?

Image 3: Measuring the jaw of the Gray Fossil Site mastodon. The long symphysis (chin) and lower tusks differ from the American mastodon and other species. (February 2019)

My research is on mastodons, and there are a few areas I’m particularly interested in: mastodon from the Southeastern US, the variability in the form and presence of lower tusks in some mastodons, and patterns in variability in tooth form as a proxy for species differences in mastodons. Despite being one of the most common, charismatic, and well-known groups of fossil animals in North America, there are a lot of things about mastodon evolution we don’t really understand. While there’s a lot of exciting research going on in the genetics of ice age mammals, including mastodons, my own research uses the good ol’ dry bones approach of looking at morphology: not all fossils preserve good genetic material, even if they’re geologically recent enough to (this seems like it’s a particular problem in the Southeast), and a lot of the areas where we have the biggest questions about mastodon history (when did certain lineages/species split from each other and how? what might have driven certain adaptations?) involve fossils too old for genetic work to be done. Documenting, measuring, and describing specimens — especially teeth, the most durable part of the vertebrate skeleton and (in most mammals) among the most taxonomically informative, and especially especially the 3rd molars (in elephants and their relatives, the largest, longest-lasting, and most distinctive tooth) — provides a basis for large-scale studies of patterns and gives us a morphological framework on which we can place the results of isotopic and genetic studies. I also have a great fondness for “historic paleontology,” investigating and revisiting work done many decades ago to see how older scholarship can fit in with newer interpretations, and to try and solve long-standing questions where information may have slipped through the cracks of history. This kind of investigation laid the groundwork for my master’s thesis, which was anchored on the redescription of the mastodon skeleton on display at Amherst College, collected in 1868, published on briefly in 1918, and little remarked-upon since — which is a shame, because some of that material is really remarkable; the lower tusks on that mount, for example, are the largest I’ve come across for this species of mastodon, and the teeth are proportionally wider than in any other specimen yet measured.

Image 4: Measuring a baby tooth from an early mastodon, Zygolophodon proavus, at the Beneski Museum of Natural History. (February 2020)

What methods do you use to communicate science?

As I noted above, I started out as a museum docent, and I still think talking to people face-to-face at a museum is the finest, most engaging way to share the excitement of paleontology. That’s not really something I’ve gotten to do with a lot of regularity since I came to ETSU, but through collections I’ve gotten opportunities to be involved with another really great branch of museum education and outreach: exhibits! There is a lot of work that goes into making a museum exhibit — even a temporary one. Specimens have to be assessed and have condition reports filled out, and adequate supports have to be made for them; theme, tone, and content have to be decided on for the text, and illustrations and graphics have to be made; and the exhibit has to be prepared with visibility and accessibility for as many museum-goers as possible in mind. Earlier this year, I was able to complete a small temporary fossil exhibit that my colleagues and I began back in early 2020, before the pandemic, and I found the whole process fascinating. There are so many things that I just hadn’t considered about the process beforehand, and I think getting to have that experience is really informative. It’s certainly a different feeling to chatting with visitors and educating on the fly out on the museum floor.

What is your favorite part of being a scientist?

One of the things I find most exciting about being a scientist — and particularly a paleontologist — is just the connection you get to have with the natural world. In doing paleontology, in any capacity, you’re connecting yourself with everything that came before you in some small way. A lot of people like to approach paleontological research with the idea that it should be striving to answer Big Questions with major, serious implications for the modern world (often with particular emphasis, on climate change and its ecological effects), and that research is wonderful and critically important, but I personally don’t agree with the notion that it should necessarily be a driving factor in all paleontological research. Sorry to expound my own weird philosophy on the subject, but… humans are the only species we know of that has ever had the capability to look back and to study what the world was like in own past and before we even existed; I think that we almost owe it to the organisms that came before us to study and understand them and their lives and their worlds. There’s something primal and fascinating about getting to hold in your hands, to see and seek to understand, some part of a living thing that has been hidden away for millions of years. I don’t think it’ll ever stop being an amazing thrill.

Image alt 5: The lower jaw of an American mastodon from South Carolina, at the Mace Brown Museum of Natural History at the College of Charleston. Note how this mastodon lacks tusks in its lower jaw. (May 2019)

What advice would you give to aspiring scientists?

For someone who wants to be a scientist, I’d say it’s good practice to get into to learn to change your mind about things with new information, and try not to make knee-jerk decisions or reactions — which are not things that come naturally to (probably) anyone, but learning to adapt your interpretations and opinions with more data and more reflection is critical in science. Also, though this is cliché, you should definitely always have an excitement for the natural world and an inquiring mind about it. For someone interested in paleontology particularly, I would say (though I expect most people who are seriously interested about paleontology would already be doing this) to take a real interest in living fauna and flora for their own sake, because you’ll learn a lot about how organisms work and it really will help you think about what fossil organisms and ecosystems must have been like, and of course because the species we share the planet with now are totally fascinating in their own right. Another paleontology topic I feel is important to clarify is that to be a paleontologist, you don’t have to be good at all aspects of paleontology: fieldwork is NOT a requirement to be a good paleontologist; being skilled at preparing fossils is NOT a requirement to be a good paleontologist; having the often-methodical skills for collections or curation is NOT a requirement to be a good paleontologist; teaching classes is NOT a requirement to be a good paleontologist; having a doctorate is NOT a requirement to be a good paleontologist. Knowing and respecting the value of — and potential stumbling blocks in — each of these areas will serve you well, and help you carve out a niche for yourself where you feel you fit in, and have a job that matches your skills. Don’t be afraid to realize that you maybe aren’t cut out for some parts of paleontology — maybe you hate being out in the dirt, or dread the idea of spending years working toward a PhD. There’s still room for you to contribute great, important work to the field.

Devra Hock, Paleontologist, Ph.D. Candidate

Tell us a little bit about yourself.
Hi! My name is Devra Hock and I am currently working on my PhD on mammalian paleoecology. Outside of my research, I love dance and musical theater. I’ve danced and performed my whole life and recently that interest has shifted towards aerial dance (think Cirque du Soleil, but much less fancy). I teach aerial hoop and pole fitness classes, as well as perform with my aerial studio in Lincoln, NE. Having something else to focus on with non-academic goals and challenges allows me time to have fun and accomplish personal goals. I also have a love of vintage-inspired fashion, and want to help re-define what scientists look like.

What kind of scientist are you and what do you do?
Right now, I am a PhD candidate at the University of Nebraska-Lincoln, which is very similar to a research scientist. I conduct my own research for my dissertation, as well as teach in my department and assist my advisor with his research. I’m studying mammalian paleo-ecology, and specifically looking at how the distribution of mammalian traits can be used to predict environments. To do that, I use historical mammalian distributions and their associated traits and environments as proxies to build a model that can be applied to the fossil data. Currently, I am comparing both North American and African mammal data to determine which is the best proxy to use for Miocene North American fossil localities. Another part of my research is examining the change in North American mammalian distributions from historical to modern times and discussing possible causes. In addition to my research, I am on the board of the Association for Women Geoscientists and currently transitioning from a region delegate to the Communications Coordinator after participating on the communications committee being in charge of the AWG Twitter and part of the team that keeps the website updated.

What is your favorite part about being a scientist, and how did you get interested in science?
I grew up loving going to museums and science centers, but that did not translate into an interest into science as a career field until middle school, with a 6th grade field trip focusing on earth sciences. That was my first exposure of geology as a scientific field. From there, the following year I researched what radiocarbon dating was for a research fair at school and used woolly mammoths as my example in that project. While working on that project, I found myself going down the paleontology documentary rabbit hole and got more and more interested in paleontology itself. In high school, I was lucky to have a science teacher that had a background as a paleo-anthropologist, and I was able to really develop my interest in paleontology throughout high school.

As a scientist, I appreciate the skill to look for questions that don’t have answers and to think critically about data and facts presented to me. I’ve also learned how to be collaborative with a variety of people from different disciplines. Additionally, one of my favorite parts about being a paleontologist is our ability to essentially time travel through our research. Especially when we’re out in the field, we’re standing in rocks that formed millions of years ago and finding fossils that haven’t seen the light of day since they were buried. As a geologist and paleontologist, we’re able to look at the rocks and interpret what environment created each rock layer, and travel through different environments as they changed through time. In my specific field of paleo-ecology, we try to understand what the interactions of animals and their environments looked like throughout time.

How does your work contribute to the betterment of society in general?
My research has two broad contributions to society. First, my research of historical versus modern mammalian distributions will add to our knowledge of the changes occurring in the natural world around us and what the potential causes might be. These discussions contribute to the work of ecologists and conservationists as they work to maintain our natural spaces for future generations. Second, my research into paleo-ecology will add to our knowledge of the evolution of environments and animals throughout time, which also contributes to our understanding of why and how environments change and what the animals’ response has been in the past.

My work with the Association of Women Geoscientists and local outreach events creates discussions about equity and equality in the geosciences for women and other underrepresented groups. Currently both with AWG and in my own department, I have been working with others to find sustainable and achievable methods to increase diversity and inclusivity in the geosciences and to dismantle systemic and institutional barriers.


What advice do you have for up and coming scientists?
My biggest piece of advice is to find a way to try out things you’re interested in to see if you really like doing them. I started doing field work in high school as a gauge if I really did like paleontology in practice and not just from TV documentaries. It’s also a great way of building experience and connections. My second biggest piece of advice follows that, which is networking. Just like any other field, your path is what you make of it, but knowing other people in your field can change the shape of your path. Don’t be hesitant to reach out to professors or researchers in the field that you’re interested in. With emails, the worst that can happen is they never respond! Science is filled with opportunities, but unfortunately opportunities aren’t always equal. You may have to seek out experiences that will help you later on. There are a lot of unspoken rules and expectations, and sometimes you won’t get opportunities you are qualified for, and that’s not your fault. You just have to keep pushing and your time will come. However, with everything I just said, don’t lose yourself to your science. We are all multi-faceted human beings with lots of different interests. Make sure to take time for yourself and your other hobbies. Time away from school or research is just as important as time spent working. While school and research are important parts in your life, they aren’t your entire life. Remember, you can’t do science if you’re burned out!

To learn more about Devra and her research, visit her website here!

Alex Klotz, Physicist

Photo by Sean DuFrene

I am a physics professor at California State University, Long Beach. My specialty is biophysics, which as the name suggests is at the interface of physics and biology, and I’m interested in using materials from the natural world to answer fundamental physics questions. Evolution has had billions of years of practice to engineer neat materials, while we have only been doing it for a few thousand. I spent a few years looking at knots in DNA to understand how entanglements between in and between molecules affect the mechanical properties of things made out of molecules. Now I study DNA structures called kinetoplasts, which are basically sheets of chainmail made of thousands of linked DNA loops. They look like tiny jellyfish and are found in the mitochondria of certain parasites. Among other things, I’m trying to use them to answer questions about the physics of 2D materials that are important for bringing materials like graphene (single-layer carbon) to actual technological use. Totally unrelated to my work with DNA, I also wrote a paper calculating how long it would take to fall through a tunnel through the center of the Earth (38 minutes), which was all over the news for a few days back in 2015.

I also dabble in outreach; I kept a blog about my various science thoughts and adventures for a few year and volunteer for programs like NetPals and Skype-a-Scientist. I’m hoping to start a similar program here in Long Beach. Right now the most outreachy thing I do is make dumb science jokes on twitter, which mainly reach other scientists.

My favorite part of being a scientist is figuring something out that nobody has figured out before, it is an amazing feeling. I remember the first “discovery” I made during my senior thesis in college and the few that I made over the next few years. Now I’m lucky enough that I get to discover new things a few times a year. I’m training several students in my lab and I hope they get to feel that as well.

A kinetoplast, which is a network of about 5000 linked DNA rings, is seen here under a microscope moving along with a flowing liquid. Its shape changes from a folded taco to a flat frisbee as it moves. Scale bar is 5 microns, about one-tenth the diameter of a human hair.

My main hobby the last few years has been road biking, which I like as a way to experience the outdoors, meet people while not having to talk non-stop, and stay fit and active. It was a pretty good hobby to have during the pandemic when there was nothing else to do. I used to play ultimate frisbee, but I’ve been injured for a few years. I like animals although I don’t currently have any pets. Another pandemic hobby I picked up was walking around the neighborhood every morning and meeting all the outdoor cats. I just moved a month ago so I have to meet all the new cats.

I won’t say too much about the path I took and how you should follow it, because it involves a good deal of privilege and luck. My advice to graduate students is to attend as many seminars as you can, not just in your own sub-sub-sub-field of research. You learn a lot about your discipline that will come in handy later, you can make good contacts, and you can get ideas that you may be able to apply to your work.