Stephanie K. Drumheller-Horton, Paleontologist

All kinds of things can move, alter, or even destroy animals’ remains after they die, but before they fossilize and are discovered by paleontologists. The study of these processes is called taphonomy. I specialize in taphonomic processes affecting vertebrates (animals with backbones), especially archosaurs (crocodiles, dinosaurs, and everything in between).

American alligator (Alligator mississippiensis) bite mark collection on cow bones, at the St. Augustine Alligator Farm, Florida.

I work a lot with living animals to better understand extinct ones. In my bite mark research, this includes collecting crocodylian bite mark examples on pig and cow limbs. I have spent a lot of time at the St. Augustine Alligator Farm collecting data. By studying modern bone surface modifications, I am trying to find novel marks or patterns of marks, which can be used to positively identify similar structures on ancient bones. This lets me identify fossil traces left by particular behavior types or organism groups.

Bone surface modifications are traces on bone surfaces left by other members of or features in its paleoenvironment. This includes everything from sediment abrasion to carnivore bite marks. All of these different types of bone alterations can tell us something about the environment in which the affected animal lived and died. However, we can only access this information if we are able to correctly identify and interpret the marks. Once we can differentiate these marks, we can start asking questions about evolution and paleoecology. What kind of environment was here when these animals were alive? Who was eating what in this ecosystem? How did this animal become fossilized, and what might that tell us about the diversity of the original environment? Paleontologists are not the only people to consider how bones have been altered through time. Forensic osteology is a field of science dedicated to studying what happened to human bones based on features left on the bone material. Read more about forensic osteology here.

A) Line drawing cross section of a stereotypical mammalian long bone, with explanatory illustrations bite mark classifications. Photographic examples of bite mark types: B) Two pits made by an American crocodile (Crocodylus acutus); C) Puncture made by an American crocodile (Crocodylus acutus); D) Score made by a Chinese alligator (Alligator sinensis); E) Furrow made by a New Guinea crocodile (Crocodylus novaeguineae). Scale bars = 1 cm. From Drumheller & Brochu (2016).

The thrill of discovery is a big draw. When I find a new fossil out in the field, it’s pretty exciting to know that I am the first human being to ever see it. I feel the same thing about collecting data from lab experiments and field observations. Publishing a finished paper on a project can feel like you’ve been keeping a really cool secret, and now you finally get to share it with everybody.

Take as many opportunities to branch out and explore different fields as you can. You never know where they might lead you. My last semester of undergrad, I needed one more class to graduate. I already knew I wanted to be a paleontologist, I had actually already been accepted into graduate school. I ended up signing up for a forensic anthropology class, just because it sounded interesting, and my school had a world class program in the field. It was that class that introduced me to taphonomy and the study of bone surface modifications. One random elective class ended up shaping my entire career path.

Find out more about Stephanie’s research by checking out her Research Gate profile here or get more immediate information from her twitter here. Stephanie was part of a crowd funded experiment, found here, to excavate the Arlington Archosaur Site.

Selina R. Cole, Paleobiologist

Collecting Devonian fossils in Spain
I am a paleobiologist interested in how evolutionary patterns are generated over geologic time through biological and environmental processes. Recently, my research has focused on why some organisms are at a greater risk of extinction than others. We know from the fossil record that species go extinct, but extinction patterns are not the same for all groups – some survive for millions of years, others are relatively short-lived. I focus on identifying what factors make a group more or less susceptible to extinction, including things like environmental tolerance, feeding ecology, body size, and habitat preference. I also incorporate phylogenetics (the study of evolutionary relationships among species) into my research to determine whether extinction risk is similar for species that are closely related.

I primarily work with fossils belonging to a group of sea creatures called crinoids, which are cousins to animals like starfish and sea urchins. Crinoids have an excellent fossil record that goes back almost half a billion years. There is also a lot of variation among crinoids in terms of their feeding styles, the habitats they lived in, and how their skeletons are constructed, so they are excellent model for exploring factors that contribute to extinction risk.

Much of my time is spent working in museum collections to document variation across hundreds of features in fossil crinoids, take measurements of specimens, and collect paleoenvironmental information from the rocks the fossils are embedded in. Other important data for my research comes from new species of fossil crinoids that I have collected and/or described myself, which helps improve our knowledge of species’ geographic and temporal distributions. Finally, I analyze my datasets to infer the evolutionary relationships between crinoids and to determine what factors contributed to differential extinction patterns.

A) Examples of fossil crinoids with different feeding structures and corresponding habitat requirements. B) Geological durations of crinoid genera in the fossil record, organized by their evolutionary relationships and color-coded by habitat.

Although grounded in the geological sciences, the field of paleontology is an important complement to biology and the study of living organisms because it includes a temporal dimension: the fossil record. The overwhelming majority of species that have ever lived are now extinct, so studies of extinct organisms are important for fully understanding the history of life. By identifying factors that caused past organisms to go extinct, we can better infer the extinction risk of species living today. This is important because species are currently going extinct at an unprecedented rate as a result of human-caused climate change and habitat destruction, which has the potential to significantly impact many aspects of society, such as fisheries, agriculture, and environmental sustainability.

One of my favorite parts about being a scientist is that I get to do a wide variety of jobs. On any given day, I may collect data from museum specimens, work at a computer to program a new analysis, write up research results, do science outreach with the public, conduct field work to collect new fossils, travel to a new part of the world to do research, or describe and illustrate a new species of crinoid. It never gets boring, and I get to stay creative by coming up with ideas that will take my research in new directions.
If you decide to study science, do so because it’s something you love. Pursuing a career as a researcher is hard work, but it’s worthwhile if you’re studying subjects you enjoy. It can be easy to get lose sight of what initially got you excited about research in the first place, so be sure to occasionally step back and remind yourself why you are passionate about what you do. Give yourself time to enjoy what you study and explore new research questions, which will help cultivate your scientific creativity and curiosity.

Lena is currently working in the Department of Paleobiology at the National Museum of Natural History. To learn more about her work visit her website here or her twitter here!

Andy Fraass, Paleoceanographer and Paleobiologist

I got into science because of Jurassic Park. I’ve always been fascinated by dinosaurs, but something about reading the novel, then watching that movie opening night just grabbed my brain and has never let go. When I got to college I realized that dinosaurs aren’t really the best way to ask the big questions that I’m interested in, like how evolution works, or how the possible shapes that an organism can have is shaped by evolution, or how past climate changes alter the course of evolution.

I study foraminifera because we (scientists) can find thousands – millions – in a single sample. We’re also not studying just a bone or two, we can find the entire shell. Having so many fossils to look at lets us be more sure of our findings. It’s so much cooler than dinosaurs. I know, I’ve yet to be able to convince anybody else of that.

I, as a micropaleontologist, also study past climates because it’s more important for society. Understanding evolution is important, but understanding the changes that our society, my daughter, and her kids (if she wants them) will experience is a more important use of my talents as a researcher and educator. I also use stable isotopes, the number of different fossil foraminifera with certain ecologies, and even just the sediments themselves to try and understand what controls past climate. One of the main findings of this field (called paleoceanography) is that our current changes in climate are unprecedented in well over 65 million years, with some research that concludes this is the most extreme climate change in about 400 million years (click here to read more about climate change and the geologic history of CO2 in Earth’s atmosphere).

The left part of the graph is a measure of diversity, or the number of different species or genera of planktic foraminifera. Geologic time is plotted along the top of the graph, measured in millions of years (Ma). The number of species (purple) and genera (gold) of planktic  foraminifera through time are plotted on the chart. The grey shapes in the background are the number of sites in the ocean that have rocks of that age. This graphic shows a clear large extinction at the end of the Cretaceous (~65 million years ago with a huge, sharp drop in diversity) and a more gradual change at the Eocene/Oligocene boundary (~34 million years ago).

My favorite part of science – bar none – are the people with whom I work. Figuring out questions and discovering things is wonderful, but the best part is doing it with people who are as enthused with science as I am. Science can be hard, and it can be very frustrating. I have the amazingly good fortune of having friends whose skills complement mine and who help get me through the frustration. There is nothing better than sitting around a table plotting out a three-year project with a couple of folks who are as excited about the scientific possibilities as I am.

Audrey Martin, Planetary Geoscientist

I am a planetary geoscientist, which means I study rocks from other planets and asteroids in the solar system! More specifically, I study a group of asteroids called Trojans. Most asteroids in the inner solar system are found in the Main Asteroid Belt, however Trojans are found further out. They orbit in two swarms and share an orbit with Jupiter (Figure 1). They have gravitationally stable orbits around the Sun, and probably haven’t moved for nearly 4.5 billion years (almost the age of the solar system!). Asteroids like this are called ‘primitive bodies’ and hold useful information about the environment in the early solar system before planets were made. I use Trojan asteroids to reconstruct major events that shaped our solar system.

Everything we see comes from photons in a very small sliver of the electromagnetic spectrum called the ‘visible.’ Trojan asteroids are some of the darkest objects in the night sky, so I ‘look’ at them in the thermal infrared (TIR). All objects in the universe radiate heat in the form of photons, and I look at the heat radiated by Trojans. This is basically how night vision goggles work! Using TIR data, I can examine the surface characteristics of Trojans (i.e., what minerals are present and texture) that are useful in determining their formation environment. By knowing how and where Trojans formed we learn more about what the solar system was like billions of years ago.

This is a figure of the relative positions of the inner planets (Mercury, Venus, Earth, and Mars) as well as Jupiter. The main belt orbits the sun between Mars and Jupiter. Notice the Trojan asteroid swarms, in orbit with Jupiter. This figure is definitely not to scale! From Planets for Kids, click through the image to get to their website!

Trojan asteroids are useful as ‘planetary fossils’ because they have been relatively undisturbed since the early days of the solar system. As such, they hold clues that are crucial for our understanding of the evolution of the solar system and planets. In 2021, NASA will launch Lucy a mission to the Trojan asteroids. The mission was aptly named after the fossilized hominid skeleton which helped form much of our knowledge on human evolution. In a similar manner, Lucy will collect data that are integral for understanding planetary formation and conditions in the early solar system.

My favorite part about being a scientist is learning more about how our solar system formed and gaining perspective on how precious Earth is. It is tremendously humbling to be a planetary scientist and research rocks that were formed in the solar nebula billions and billions of years ago, using data from spacecrafts that are currently over 200,000,000 km from Earth. And with the same spacecraft we can look back to Earth and see a small rocky planet, host to all the life we have ever known.

My advice to young scientists is to remain curious and keep asking questions. What you will find is with every question answered two more pop up, but keep asking. Sure, life as a scientist can be difficult, but that is not unique to a career in science. The unique aspect of being a scientist is that we get to expand the ‘bubble’ of human knowledge. As scientists, our endeavors are only limited by complacency. We will never know all that is there to know, but it is our job to keep searching and learning and discovering by asking questions.

Animations of Trojan Asteroids as they co-orbit the sun with Jupiter

Davey F. Wright, Paleontologist

Davey examining a fossilized coral reef from the Pleistocene of San Salvador Island, Bahamas.
I am a paleontologist and macroevolutionary biologist interested in advancing methods to reconstruct evolutionary “family trees” (= phylogenies) containing fossil species and how we can use evolutionary trees to answer questions about large-scale evolutionary patterns and processes. For example, when combined with mathematical models of evolution, phylogenies play a critical role in determining how fast species evolve in nature and why some lineages rapidly multiply into ecologically diverse descendants, whereas others persist in stasis or go extinct.

My taxonomic specialty is the Echinodermata (starfish, sea urchins, and kin), especially the Crinoidea (sea lilies and feather stars), which have a spectacular fossil record spanning nearly a half-billion years. Because echinoderm skeletons are highly complex and commonly preserve ecologic features as fossils (such as feeding structures), they are an ideal group for studying trait evolution and diversification at large scales over geologic time. My research sometimes dabbles with taxonomic databases (such as the Paleobiology Database) and other published sources, but I most frequently gather data my own data from first-hand observations of fossil specimens. The majority of my “fieldwork” involves dredging museum collections for exceptionally preserved specimens, but I also have a passion for paleontology in the field and am always looking for new ways to involve field-based data into my research.

Diversity history of Ordovician through early Silurian crinoids. The Middle to Late Ordovician rise in diversity shows the Great Ordovician Biodiversification Event (GOBE) as expressed in the crinoid fossil record; whereas the subsequent drop in diversity is related to the Late Ordovician mass extinctions. The dotted, vertical line represents the Ordovician–Silurian boundary. Geologic time is represented in million-year units (Ma). (Figure from Wright and Toom, in press)

I am presently involved in a number of different projects, including: new approaches to estimate fossil phylogenies that attempt to account for the incompleteness of the fossil record, ways to statistically test speciation models and ancestor–descendant relationships, and documenting global patterns of biodiversification during key intervals of Earth history. A recent project of mine has focused on disentangling the relationship between rates of evolutionary change and the accumulation of morphological variation within lineages. One might expect that when the rate of morphological evolution increases, you would have an associated increase in the overall diversity of body plans. However, results from my work suggest that elevated rates of evolution are often decoupled with changes in morphological variation. In fact, elevated rates may frequently involve multiple, independent radiations of distantly related species driven toward a pre-existing adaptive optimum by environmental change. Furthermore, major global change events throughout Earth history have acted to create, eliminate, or ‘reset’ ecological optima on the adaptive landscape upon which lineages evolve, which further complicates associations between rates of evolution and the diversity of anatomical forms. In addition to these broader issues, my phylogenetic research has also resulted in major taxonomic revisions of fossil and living crinoids.

Results from a Bayesian “tip-dating” analysis of early to middle Paleozoic crinoids depicting the evolutionary tree with the highest probability, which represents one of many possible hypotheses of relationships. Posterior probabilities are expressed in percent; blue bars represent the range of fossil age estimates; and black bars represent maximum possible stratigraphic durations. (Figure from Wright, 2017)

Being a scientist is fun! When I’m not measuring fossils, coding their anatomical traits, or describing new species, I’m most likely writing R code or conducting some kind of computer-based analysis of paleontological data. Some days I teach or engage in public outreach; other days I brush up on probability theory or new computational methods. Sometimes I daydream about crinoids. One of the best parts of being a scientist is that you get to use your creativity to satiate your intellectual curiosity.

Davey collecting ~350 million-year-old fossil echinoderms in the Brooks Range of Arctic Alaska
As a postdoctoral researcher I’m not sure if I’m qualified to give career advice, but I can at least provide some thoughts about my own experiences. During grad school, I was never able to relate to blog posts and comics on social media that promulgate the stereotype of unhappy, disgruntled graduate students. I am not claiming the path to erudition doesn’t have its share of ups and downs, nor wish to dismiss or downplay the difficulties experienced by others. I would just say that my experience was the exact opposite of the one caricatured by PhD Comics. For me, graduate school was filled with delightful opportunities that would have otherwise been unavailable had I chosen another career path, such learning to program or getting to travel the world. When I first became interested in paleontology, I never expected I would also get to learn so many cool things about geology, molecular evolution, statistics, or computer science. In many ways, the time I spent as a student were some of the best of my life. Nothing can take that away. Enjoy life, keep learning, and stay positive.

To learn more about Davey’s work click through to his website here or follow him on twitter here.

Eleanor Gardner, Avian Taphonomist and Science Outreach Specialist

I consider myself an avian taphonomist – a unique niche within the field of paleontology – as well as a science outreach specialist. I will first explain my research interests and then discuss my path to a career in science outreach.

Examining Late Pleistocene avian fossils in a cave on Royal Island, Bahamas
In case the word is new to you, “taphonomy” is the study of what occurs between the death of an organism and its discovery as a fossil. I am interested in better understanding the circumstances that lead to differential preservation of avian skeletal elements, including depositional environment, scavenger activity, age- and gender-related effects, among other factors. Through my work, I try to explore what drives preservation biases in the fossil record of birds.

Diagram of bird skeleton with color indicating the 5 most commonly preserved bone elements. The five bones in order of abundance were humerus, tarsometatarsus, the coracoids, ulna, and the tibiotarsus.
My research has mainly centered upon actualistic taphonomy experiments, which means that I conduct experiments with modern organisms and environs in order to make inferences about the past. For projects conducted via the University of Georgia (as a student) and via the University of Tennessee at Martin (as a faculty member), I collected humanely-killed chickens and ducks of known age, sex, and diet and put their carcasses out in different types of environments in different climate regimes. One thing that I was especially motivated to investigate was any role that medullary tissue might play in the preservation potential of avian leg bones. After the publication of Schweitzer and others in 2005 documenting possible soft-tissue preservation in a T. rex femur, I became fascinated by the concept of medullary tissue preservation. Medullary tissue is a reproductive-specific tissue in female birds that forms along the innermost layer of limb bones during the egg-laying cycle; it acts as calcium storage for production of the egg shell. Because it is formed rapidly and then utilized (broken down) rapidly, there is a net loss of calcium from females’ skeletal elements. Because of this, it might be expected that a gender-based preservation bias exists in the avian fossil record. In addition to this particular factor, my experiments have examined the roles of age (juvenile vs. adult), environment (habitat, temperature, humidity, pH, lithology, etc.), bacteria and fungi, and scavengers (including insects, invertebrates like crabs, and vertebrates like alligators, raccoons, and bobcats). Publications reporting my results are forthcoming!

In 2016, a large review paper that my coauthors and I had been working on for about seven years was published. It morphed from a literature review for my thesis into a multivariable analysis of the roles of paleoclimate, environment, and bird body size in avian fossil preservation. It is my hope that the paper will inspire future avian taphonomy studies to improve collection of climate-related data. Understanding how climate change has impacted the avian fossil record could shed further light on questions about speciation and extinction of birds throughout time.

Interacting with young visitors at the Aurora Fossil Festival in Aurora, North Carolina, as part of the FOSSIL Project
My other passion (and now my career) is science outreach and education. Throughout my undergraduate and graduate studies, I was involved in public outreach events with my universities, local nature centers and parks, and regional museums. After getting established in my first job – which was as a geology instructor at the University of Tennessee at Martin – I became motivated to engage underserved K-12 girls in the community and so I began leading a science-focused Girl Scout troop. My move in 2015 to the Florida Museum of Natural History brought me even further into the world of public outreach and education as the coordinator of a project funded by the National Science Foundation called FOSSIL: Fostering Opportunities for Synergistic STEM with Informal Learners. In this role, I’ve been able to help develop and lead paleontology workshops, foster connections between amateur and professional paleontologists across the world, and collaborate on science education research. (Learn more about FOSSIL by clicking here). Organizing opportunities for people to share with others their paleontology skills, experiences, and enthusiasm has been enormously rewarding. In mid-August of this year, I’ll be starting a new job with the University of Kansas Biodiversity Institute & Natural History Museum as their Outreach and Engagement Coordinator. I’m really excited about continuing to work with the public in a new capacity to foster a greater understanding of science and an appreciation for the Earth and its history.

Being creative, asking questions, and devising ways to get others excited about science (most often about paleontology) are all aspects of my jobs that I have loved. If you’re interested in pursuing a career in science, know that there are a wide variety of different positions and career paths, so keep your options open! Explore your curiosities and read, read, read as many peer-reviewed papers as possible.

Eleanor has recently started her position at the Kansas Museum of Natural History! Don’t forget to check out the myFOSSIL community here and an interview with the Fossil Guy here.

Sarah Sheffield, Invertebrate Paleobiologist

Sarah exploring the Devonian Spanish echinoderms on a beautiful beach.

As an invertebrate paleobiologist, I work on group of extinct echinoderms (the group including sea lilies and sea stars): the diploporitans. These fossils, which admittedly look like weird potatoes, are not well understood. Their evolutionary relationships to other echinoderms, biogeography, or even why the diploporitans went extinct are big questions that don’t have answers. This is important because the diploporitans lived at a time of very dramatic climate change, the Ordovician. During this time, the diploporitans changed their body plans a lot, likely in response to this climate change. If we are able to learn more about how this group of echinoderms responded, we might be able to better understand how modern organisms will also respond to rising ocean levels, warmer waters, and higher acidification. To learn more about this puzzling group, I have done fieldwork in rural Spain, the western coast of Sardinia, and southern Indiana to uncover new diploporitan fossils. I have also traveled to museums in the Czech Republic, Estonia, and all over the U.S. to restudy diploporitan collections. I study the fossils I find in the field or that I see in museums for morphological differences between the specimens; these differences are used in analyses so that I can understand the evolutionary tree of diploporitan echinoderms.

Eumorphocystis multiporata (SUI 97597), an Ordovician-age diploporitan that shows unusual features. This fossil has features that are similar to early crinoid fossils, which might help us understand early echinoderm evolutionary relationships.
My favorite part of being a scientist is getting to learn something new every single day. I work with scientists across the world that specialize in all kinds of different scientific fields-I get to learn something every time I talk to them. My second favorite part of being a scientist is getting to do something new all the time-my work takes me to places I’d never have imagined getting to visit, meet new people from all over the world, and research new questions. My job is so much fun-I couldn’t imagine doing something different!

My advice to young scientists is to find what you are really, really passionate about. This isn’t easy at all! I tried a lot of things before I discovered that I loved invertebrate paleobiology, and that’s ok! Try new things, learn stuff along the way, and discover what it is that makes you absolutely love going to work each day. We need your passion about whatever branch of science you choose if we want to keep making scientific progress. And never give up-science can be very frustrating some times, if your experiment doesn’t give you the result it wants, or your classes are tougher than you expected. By trying your hardest, I promise you’re more than halfway there!

Read more about Sarah’s work on her website here or on her Twitter here.

J. Mike Hils, Paleontologist and Instructor

Visiting with a metallic Tyrannosaurus rex.
“Let me get this straight: You are a Biology major that takes Geology classes, and you work for Chemistry?” A friend said that to me many years ago. It seemed funny back then, but it still true. I have always loved the natural sciences, and my experiences as a student and as a college instructor have allowed me to participate in these three fields.

My research involved studying the relationships between sediment types, burrowing animals, and the burrows shapes that they make. Although this may like a strange topic, consider this: Insects and mammals can’t burrow into groundwater (water stored in sediment underground), so their burrows stop at the water table (the boundary between dry soil and water-soaked soil). Many plants cannot live if their roots are submerged, so the roots also stop growing at the water table. Because roots and burrows can be preserved in the fossil record, they can be used to determine past climate conditions. For example, if a paleontologist finds that roots and burrows found in a rock layer all have the same depth, then there was groundwater in the past. In addition, the paleontologist could determine that 1) there was enough precipitation to allow water to soak into the ground, 2) there is enough accessible water for an ecosystem to live, and 3) there may have been a river or lake nearby as the water table is near the soil surface.

Burrows, tracks, trails, and root casts are called trace fossils. Trace fossils can also be used to determine what organisms were present in an ancient ecosystem, how diverse the organisms were, and what environmental conditions were. Much of this work is done by studying actual burrows produced in the field and in the laboratory. My work involved allowing trapdoor spiders, wolf spiders, and tarantulas to produce burrows in the lab. After moving the spiders into a new habitat, I poured plaster into the burrows and measured the dried casts.

This is an example of a cast of a burrow created by the tarantula pictured.

One of the big goals of our lab group is to determine the relationship between burrow-shape and burrow-maker. Several arachnid species have been studied in this lab: scorpions, whip scorpions, and spiders. We have found that although these groups are closely related, they all produce very different burrow shapes, and that shapes appear to be related to the behavior of the species as well as its body shape. My favorite part about being a scientist is seeing something that may be mundane and knowing there is a complex story behind it. For example, a piece of limestone used to line a flower bed represents a past environment, the skeletons of small organisms, and the transport of chemical elements from the continents to the oceans.

For the past few years, I have focused more on teaching than on research. I have been lucky enough to teach at three universities in both chemistry and geology. I have worked with many kinds of students, both science and non-science majors. Much like Time Scavengers is addressing, I have found that many of my students have very little interest in science or think that they can’t understand it. In my classroom, I encourage students to find relationships between the material and their daily lives. Although I have enjoyed my research programs and am proud of my work, I have decided that education is my real strength. I am starting a licensure program this fall to earn my teaching licensure for high school earth science and life science. I hope that my research experience and multidisciplinary approach will encourage all of my students to appreciate the natural world and never stop learning about it.

For people wanting to become scientists, I want to offer two pieces of advice: 1) All of the sciences intersect in some way, so don’t despair if you have to study one you hate to get to the one you love, and 2) The more experiences you have, the better prepared you will be for a career or in graduate school. Find ways to become involved in research or outreach. Apply for internships, even if they don’t pay!

Mike helped lay the ground work for developing a website on their lab’s ichnology projects called the Continental Neoichnological Database. Click here to learn more about the database.

Maggie Limbeck, Paleontologist

As a paleontologist I study the evolutionary relationships of ancient echinoderms (relatives of modern day sea urchins and sea stars). To accomplish this, I use morphological characters (shape and other data points measured on a fossil) to create a phylogenetic tree, or evolutionary hypothesis about the relationships and relatedness of groups of echinoderms. Currently I am working with a group of echinoderms called Paracrinoidea and I am trying to create a phylogenetic hypothesis for the group.

An example of a paracrinoid, this species is called Platycystites.

The paracrinoids missed the memo on how to be an echinoderm and are completely asymmetric (while other echinoderms exhibit some sort of symmetry) and have other unusual morphologies for their feeding structures. Because of these unusual characteristics paracrinoids have not been able to be placed into an evolutionary hypothesis and are therefore unable to be used to answer any other evolutionary questions that we may have. My research will allow this group of echinoderms to be better understood and eventually be used in other evolutionary studies. Additionally, because my research is based in understanding evolution I am able to use my organism as well as other organisms to help teach others about the concept of evolution and organisms and the environment changing through time.

Maggie exploring and loving the Late Ordovician rocks of Ohio.

My favorite part about being a scientist is getting to teach others science. I am very passionate about scientific education and outreach. I have always remembered sitting in my eighth grade science class and seeing my teacher be so excited to teach us about rocks and minerals and that excitement and wonder about the world around me has never changed. As I continue my education in geology I have come in contact with many professors who are just as excited about science as my 8th grade teacher was and their passion for teaching has impressed upon the importance of being excited about science education. I aim to be able to continue to teach and do science outreach throughout my career as a scientist to spark the same passion for science that my teachers have instilled in me.

For all of the young scientists out there, the best advice I can give you is to just go for it. If you are still in high school don’t be ashamed to like science, because science is really awesome! Take some time to get familiar with the basic concepts of whichever discipline you enjoy, search out articles that interest you, talk to your teachers about ways they can help you continue to learn more. If you are in college look for internships, talk to professors about doing an independent study on topics you are interested in, get involved in a research project with a professor. If someone tells you can’t do this or that it’s too hard of a field to get into, don’t listen to them if it is really what you want to be doing. Science is hard, I can’t lie about that, but it is also so rewarding if you are willing to work hard and just go for it.

Brenda Hunda, Curator of Invertebrate Paleontology

As a paleontologist I study how fossils are preserved in the fossil record (taphonomy), and how morphology changes within species across space (geographically) and through time (stratigraphically) in response to several processes such as ontogeny (development) and environmental change.

As a Curator in a museum, I use my research to teach our community about the process of science and why paleontology and geology are important to our society today. I am also very passionate about public science literacy, and am involved in educational program and exhibit development as well as lecturing on a variety of science topics in geology and paleontology.

With one of my favorite trilobites, Isotelus maximus.

My research is specimen-based, and requires a lot of intensive fieldwork. This is fantastic for me, because I love to be outside and being active. I get all of the trilobite specimens for analysis by hammering them out of the rock layers. I then bring them back to the laboratory where I prepare them out of the rock, photograph and measure them, and then conduct my mathematical modeling and statistical analyses to test my hypotheses and answer my questions (while generating new ones!).

Plot of landmark variation in the heads in 903 specimens of Flexicalymene granulosa (Trilobita) from the Kope Formation (Upper Ordovician, ~450 million years ago

Understanding the biotic response to climate change is crucial for our society, especially in the face of our current climate crisis, but modern biological studies are not long enough to document the long-term impact of these changes. The fossil record is an excellent resource to study species’ response to environmental change over the long term because it shows us the consequences of previously run climate change “experiments” in Earth’s history. My research shows that trilobite populations can track their preferred environment over millions of years and through constant climate perturbations rather than evolve new adaptations or go extinct. This response is consistent with many other examples in the fossil record and shows us that migration is a viable and successful response to climate change for many species.

My favorite thing about being a paleontologist is that it is the closest thing to time travel that we have. When I am in the field, I am looking at fossils that take me back 450 million years in Earth’s history, and I am usually the first person ever on Earth to have seen and collect these fossils. The fact that I am traipsing around an ancient ocean that once covered most of the United States still blows my mind. As a scientist in a museum, I also enjoy teaching the public about the amazing planet we have and the relevance, to their lives, of the world-famous paleontological resources in their back yard. There is nothing more rewarding than a child in awe.

Whatever path your career takes you on, be passionate about it. Whether you want to be a paleontologist, another type of scientist, or pursue a non-science career, if you are passionate about what you do, you will never feel like you are going to work. I look forward to what every day brings because every day is different.

Brenda is the Curator of Invertebrate Paleontology at the Cincinnati Museum Center. Brenda recently participated in the myFOSSIL and iDigBio Women in Paleontology webinar series, her video can be found here.

To learn more about Brenda and her work visit her website or Twitter.