Malique Bowen, Graduate Researcher

scientist hiking a horseshoe crab at seaWhat is your favorite part about being a scientist and how did you get interested in science in general? My favorite part about being a scientist is that it is always changing. I always get to build on what we already know, and the possibilities are endless. As a kid, my mom would buy me science kits that grew crystals, allowed me to build microscopes, and insect collection kits that all made me fall in love with the how and why behind environmental science. Since my childhood I simply remember asking why/how that works and now I have the capabilities to ask questions and do the science to figure it out.

In laymen’s terms, what do you do? I consider myself a microbial ecologist, so I essentially work to identify how microbes control the surrounding environment. I’ve worked with microbes that eat oil, microbes that live on monkeys, microbes in the water, and microbes in the ground. I try to understand how the little things make the world go ‘round.

For my master’s I am using microbes to better assess water pollution in Delaware waterways.

How does your research/goals/outreach contribute to the understanding of climate change, evolution, paleontology, or to the betterment of society in general? A lot of research I have done is applicable to water quality management. We can use oil degrading microbes to mitigate oil pollution or tracking microbial pollution through waterways can help better assess management policies.

If you are writing about your research: What are your data and how do you obtain your data? With the help of the Department of Natural Resources, we have actually been collecting all of our data ourselves. We have collected a lot of animal, water, and sediment samples to analyze for microbes.

What advice do you have for aspiring scientists? My advice to aspiring scientists would be to never be afraid to ask for help and learn. There are many other scientists that were in the same position you may be in, and many are willing to help and see you through it. The best science is collaborative science but you must ask for help first.

Follow Malique’s updates on Twitter!

Allison Nelson, Vertebrate Paleontology Master’s Student

Allison ready for field work in Montana. Photo from “Learning From the Ground Up”, University of Washington.

Hello, my name is Allison, and I’m a master’s student at Indiana University. I have a bachelor’s degree in Earth and Space Science from the University of Washington. For a few years, I worked across the western US on public lands as a park ranger and field technician. Now that I’m back in school, I’m researching wolves.

What do you do? The main question I’m trying to answer is are red and grey wolves one or two species? This is a complicated question, as red wolves have historically interbred with coyotes. The interbreeding means that they may have been a group of grey wolves that mated with coyotes and now seem different enough to be called red wolves. I use measurements of wolf skulls to see if I can find a difference (size or proportions) between grey and red wolves. Currently, I’m using pre-existing datasets, but if Covid-19 allows, I hope to visit museums and measure more skulls. 

This is an important question for conservation efforts that focus on wolves. Conservation efforts typically focus on one species, and the ambiguity makes this difficult. 

Allison digging a soil pit to assess landscape change in Eastern Nevada. Photo by Eli Rolapp.

How did you get interested in paleontology, and what’s your favorite part of being a paleontologist? During the second year of my bachelor’s degree, I took a class on volcanoes. After that class, I declared a geology major and my sedimentary geology classes talked about fossils. In class, I got to see and touch fossils, and I was hooked. 

As for my favorite part of being a paleontologist, I have two parts. The first is the field work! I love hiking with a backpack full of gear looking for fossils. The second part is the outreach. I enjoy talking to people about what has been found, what sort of creatures they were when alive, and in what kind of environment they lived.

What advice do you have for aspiring scientists? Keep asking questions! Questions and curiosity are what push science forward. 

Follow Allison’s updates on her LinkedIn!

Stephen Hill, Paleontologist/Geologist

What is your favorite part about being a scientist, and how did you get interested in science in general? My name is Stephen Hill and I am a graduate student at the University of South Florida in the department of Geosciences. Initially I had absolutely no intention of going into any field of science as an undergraduate(Majoring in history) but about midway through I was required to take an environmental science course. The instructor from that course was very encouraging when I came to her asking questions about what it took to go into biology or environmental science and invited me to join her and some other students on a visit to her husband’s research lab at the University of South Florida. That visit changed the trajectory of my life, on my drive home that day I was so excited about science, the feeling of chasing the unknown, and expanding knowledge. I left that lab that day and decided to change my major.

I eventually settled on majoring in geology over biology but as time went on I was slowly drawn towards the field of paleontology which blends aspects of both fields. I was initially drawn to geology because I was interested in the amount of fieldwork opportunities. Fieldwork and research opportunities have taken me all over, from using ground penetrating radar on grave sites in Florida to mapping the mountains of Idaho and quite a few places in between.

In laymen’s terms, what do you do? How does your research/goals/outreach contribute to the understanding of climate change, evolution, or to the betterment of society in general? I am interested in how the morphology of Paleozoic echinoderms might relate to the environment in which they lived and how that environment influences the evolution of their respiratory structures. Unfortunately, due to a number of factors well preserved fossils of this time and type are quite rare. This is primarily due to the fact that many parts of echinoderm anatomy are quite delicate and have only been preserved in unique circumstances. Work like this can offer insights into the evolutionary history of marine species as they experienced mass extinction events in the Paleozoic and could serve as an analog for understanding how marine species of today might react to manmade climate change. 

In the future I would like to dedicate more time to fieldwork and the collection of either known or unknown Paleozoic echinoderms. Even today there are still many parts of the world that are not known to science. Seeking out these areas could provide new insights in the form of new fossil species or provide samples of known species of uncommon preservation which would further our understanding of them. 

If you are writing about your research: What are your data and how do you obtain your data? In other words, is there a certain proxy you work with, a specific fossil group, preexisting datasets, etc.? Using scan data acquired from a 3D scanner, CT scanner, or a synchrotron I build a 3D computer model of a fossil. The type of scan data dictates the way the model is built, for instance when using CT or synchrotron data the model is built by combining thousands of individual slices. Because of the poor preservation building models can sometimes feel like building a puzzle or doing reconstructive surgery. Once a model is satisfactory there are many directions that can be taken ranging from being used strictly as a visual model or for finite element analysis. Finite element analysis is a broad term for quantitative methods such as structural analysis, fluid flow, or heat transfer it requires building a mesh (i.e. a model) which divides a larger more complicated object to many small triangles. These small triangles are the “finite elements” which when considered allow the larger object to be solved for more easily.  Of these finite element methods I am most interested in the application of computational fluid dynamics(CFD). Using CFD software the 3D model is put in a virtual environment where varying scenarios of water flow are simulated. As this virtual water flow occurs the software collects data relating to the drag force and coefficients created as the fluid flows around the model. From the CFD data you can theorize if one body plan would be favorable over another in a specific current setting. 

What advice would you give to aspiring scientists? When you are coming up as an undergraduate the course work for STEM majors can be pretty daunting. Do not be afraid to ask questions and seek out resources that are available to you through your university academic or otherwise. For much of my early college experience I was hesitant to ask questions in class and I did not take advantage of resources like tutoring labs on campus. Once I became more comfortable with asking questions in class and discovered the campus tutoring lab it made things a lot less stressful.

Nick Cropper, Public Health Scientist

What is your favorite part about being a scientist and how did you get interested in science? I really got interested in science in middle school when I first learned about DNA. The idea that every living thing is based on a unique combination of just four (or five) building blocks blew my mind! I remember asking myself: “What else don’t I know about the world around me?”. Ever since then, I’ve done everything I can to answer that question for myself! 

My favorite part about being a scientist is feeling like I’m contributing to the betterment of the world. Science is more than just data points and lab work. Many scientists spend their days going into communities in need and asking them how we can help. We can study the impact of our contributions to those communities and use that research to ensure we’re doing the greatest possible good. Knowing that my work could both help people immediately in need as well as contribute to helping an uncountable number of people in the future is what drives me to do science.

What do you do?  I like to think of what I do as being a doctor for a community rather than for an individual. First, I ask groups of people what problems they’re having. Then, with their help, I diagnose what’s causing their problems. Finally, we figure out what the best treatment is and do our best to improve the situation. Once we’ve implemented some of our solutions, we come back and ask ourselves “What worked? What didn’t? Why did some things work and not others? And how can we make sure that we do better next time?”. At the end of the day, I try to improve the lives of people in a community by utilizing the scientific method.

How does your research contribute to the understanding of climate change and  the betterment of society in general? My research and outreach will focus on the policies designed to prevent future pandemics and protect vulnerable people from disease. Climate change is the existential issue facing our society today and its impacts will touch innumerable lives in the coming years. My priority as a public health scientist is to understand how climate change will affect the health of people globally and what we can do to mitigate the harm. I hope that my work will save lives and improve the quality of life for those most likely to be in harm’s way.

What are your data and how do you obtain them? I haven’t formally started my research yet, but I hope to work with policymakers to improve climate and disaster preparedness/response policies. My data will come from two sources. First, I’ll use research into past disaster responses to determine what went wrong and what could have been done to save lives or mitigate damage. Second, I’ll draw on existing policies that govern disaster preparedness and responses to determine where gaps still remain. The COVID-19 pandemic is an excellent example of how different policies resulted in better or worse outcomes around the world. I suspect I’ll be comparing those policies and learning from their outcomes for much of my career!

What advice do you have for aspiring scientists? You can do science. Don’t allow yourself to be fooled by the misconception that you can only do science if you were the smartest person in the class or that a career in science is only for a certain type of person. Science is for everyone. In fact, science is most successful when there are scientists with a broad diversity of backgrounds, ideas, and interests. No matter what you may have excelled at or struggled with, whatever your experiences have been, wherever you’re from and whoever you are, there is a field of science in need of a unique and brilliant mind like yours.

Sam Ocon, Invertebrate Paleontology Graduate Student

What is your favorite part about being a scientist and how did you get interested in science? There is something so magical about being the first person in the world to know something. Even more magical, at least to me, is talking about that thing to others so they can share in the excitement! One of the major appeals of being a scientist, to me, besides adding to the general knowledge of the human race, is also learning to see the world in a different light; for example, long drives have become so much more exciting since I’ve been trained as a geologist. I loved watching the geology change as we traveled from my home state of Florida to my new state of West Virginia! 

I’ve been interested in science since I was very small. I come from a family with no formally trained scientists; however, several members of my family are fascinated by different aspects of the natural world. My dad is an amateur ichthyologist, my grandpa, a self-taught horticulturist, and my grandma is a nurse with a fascination for human biology. Growing up surrounded by people fascinated by science and nature (and watching Jurassic Park every single day) lead me to find science at a very young age.

What do you do? I am currently looking at horseshoe crabs, both fossil and modern, to figure out if they are really “living fossils” or not. More specifically, I’m looking at how fast their shape actually changes through time and if it is really as slow and steady as we commonly think it is.

How does your research contribute to the understanding of  evolution? I am hoping to use what I discover to inform horseshoe crab conservation around the world! For example, knowing how horseshoe crabs adapted to past mass extinctions (they’ve survived all 5!) will tell us how they may react to modern climate change. This will also help us understand more about other groups considered to be “living fossils” and teach us more about long term trends in evolution. 

What are your data and how do you obtain them?  Some of my data is from previous work done by my advisor, Dr. James Lamsdell, but I will also be collecting more data this spring and summer from 3D scans and photographs of fossil horseshoe crabs.

What advice do you have for aspiring scientists? If you are passionate about science, embrace that! Science takes a lot of hard work, but passion makes the hard work worth it. You can do this!

Sinjini Sinha, Paleontology Ph.D. Candidate

Sinjini ready to dissect an extant bony fish to study the anatomy of the fish at University of Alberta, Canada.

Hello! I am Sinjini, a Ph.D. Candidate at the University of Texas at Austin. Prior to starting my doctoral studies, I pursued my bachelors and masters in Geology at the University of Delhi in India. Following that, I moved to the University of Southampton, UK to pursue a Master of Research in Vertebrate Paleontology and then joined the University of Alberta, Canada to study a M.Sc. in Systematics and Evolution. My previous research focused on the systematics and paleoecology of Late Cretaceous sharks from central India and southern England as well as on the diversity of Paleocene bony fishes from Canada.

What is your favorite part about being a paleontologist and how did you get interested in paleontology in general?
My favorite part of being a paleontologist is that it gives me the opportunity to dig up fossils in exotic locations- be it in the sandstones of Central India, in Western Canada or the chalk deposits of Southern England. I also enjoy sharing my scientific knowledge with non-scientists through Skype a Scientist sessions, in person outreach events, or simply by random conversations.

I always found it fascinating to know that fossils are remains of organisms that were alive several million years ago. During my undergraduate days at the University of Delhi in India, I used to enjoy my paleontology classes more than any other geology course and hence pursuing my dissertation in paleontology was an obvious choice for me. It was during my dissertation days, I realized how paleontology addresses critical questions about earth-life interactions in deep-time and that earth’s paleontological history archived in the deep-time rock record provides a major research opportunity to investigate the future of our planet. As my research progressed, I became sure that I want to pursue an academic career in paleontology and doing a Ph.D. is the next steppingstone towards fulfilling my career objectives.

What do you do? 
I study a moderate mass extinction event during the Early Jurassic (about 183 million years ago). During this period, there was a volcanic province eruption, which injected large volumes of carbon dioxide into the atmosphere. As a result, there were significant perturbations in environmental conditions around the globe such as global warming, low oxygen levels, and acidification in some parts of the ocean. It is thought that these changes led to multiple (or multi-phased) biotic crises, but they may have also enhanced exceptional fossil preservation. Fossil deposits that contain both hard skeletal parts (such as bones) as well as soft tissues (e.g., ink sacs of coleoids) of organisms are considered as exceptional fossil deposits (or Konservat-Lagerstätten deposits). Though rare, such deposits provide uniquely comprehensive records of past life. These deposits contain a direct record of soft tissues of organisms not typically preserved in regular deposits Thus, the goal of my research is to address how these changing environmental conditions in the Early Jurassic affected the exceptional preservation, extinction, and recovery of organisms.

Sinjini measuring a Late Cretaceous shark tooth from the Chalk deposits of England.

What are your data and how do you obtain them?
Soft tissues of organisms get preserved under rare circumstances in which rapid soft tissue mineralization proceeds faster than soft tissue degradation along with other local (e.g., depositional environment, or climate), regional, or global (e.g., weathering, or bioturbation) phenomenon affecting their preservation. Sometimes, a combination of preservational pathways can lead to exceptional preservation. Thus, the mineralogy of a fossil specimen is the result of the preservational process it has undergone, especially since the preservation of soft tissues typically requires rapid growth of minerals in the original place. I use a Scanning Electron Microscope to get better images of the structures of the fossils and then use Energy Dispersive X-Ray Spectroscopy (EDS) to obtain the mineralogy of the fossils from the elements detected in the EDS.

For the extinctions and recovery aspect of the project, I will be studying the occurrences and abundances of the different groups of fossils across the extinction boundaries. This will help me investigate which organisms survived the extinctions and which organisms went extinct. The fossils will be collected through field work.

How does your research goals contribute to the understanding of evolution and paleontology in general?
Results from my project will provide information about preservational pathways of exceptional fossilization. Exceptional fossil deposits capture information about organism morphology, ecology, diversity, evolutionary relationships, and paleo community structure, hence more information about them is necessary for filling gaps in the paleontological record. In addition, it will provide data about the patterns of biotic change in tropical marine communities and how these communities recovered from significant global events like those we are facing now. Broadly, extinctions not rated as the biggest could shed light on the survival strategies of organisms, addressing concerns about the conservation of extant marine communities in our changing environment today.

What advice do you have for aspiring scientists?
If you are passionate about paleontology, just go for it. I often hear from non-paleontology graduate students that they had to drop their idea of pursuing paleontology as a career because they thought there are no jobs available.

Sinjini is currently a Ph.D. Candidate at the University of Texas at Austin. To learn more about her and her research, check out her website and social media platforms below:
Website: https://www.jsg.utexas.edu/student/sinjini_sinha/
Twitter: https://twitter.com/SinjiniS
LinkedIn: https://www.linkedin.com/in/sinjini-sinha-5a101ba9/
Instagram: https://www.instagram.com/sinjinisinha

Whitney Lapic, Paleoecologist

Fig 1. This was from August 2019. I was on a research vessel off the coast of Florida, helping the EAT team collect specimens.

Some background information for you all– I am a second year Master’s student at Miami University in Oxford, Ohio. I would consider myself an aspiring paleoecologist and paleobiologist. And my interests lie in paleoecology, specifically predator – prey interactions, as well as science communication.

We know that predation plays a role in influencing modern ecosystems and so my research explores the impact that predation had on shaping ecosystems through geologic time. I am specifically looking at echinoids and how sea urchins and sand dollars evolved after new groups of predators emerged during the Mesozoic Marine Revolution (MMR). This time in Earth’s history is known for rapid diversification and emergence of new groups of marine life – many of which can be found in our oceans today. With all of these new or bigger and better predators in the oceans, prey, such as sea urchins, need to develop ways that they can deter predators from successfully attacking and preying on them.

The project that I am working on is part of the Echinoid Associated Traces Project (EAT) which addresses a wide range of paleoecological questions using biotic interactions and echinoids. My project investigates whether or not trends that can be seen in mollusks and their predators during the MMR can be seen in other groups of organisms. Recent studies suggest that the MMR was not this singular, homogenous event that it has previously thought to have been and so, we are looking at the timing of these potential escalatory trends in echinoids relative to other groups of organisms in which these trends have been so thoroughly demonstrated.

Fig 2. This is Encope, a live sand dollar that was collected off the coast of Florida.
Fig 3. In fall of 2019, I travelled to Moscow, Russia for the European Conference on Echinoderms. I attended a field trip and had the opportunity to look for sea urchin fossils.

When you think of sea urchins, you might think of long, sharp spines covering the entire organism, but that isn’t always the case. To determine if sea urchins developed traits to deter predators, we first need to find out what helps them avoid becoming prey. Over the past year, I have been identifying characteristics that we propose serve some form of antipredatory function. These morphologies include long and wide spines as well as spines that have unique shapes or sharp thorns covering them. These morphologies can actively deter predators by inflicting damage or they can promote the settlement of encrusting organisms that may provide camouflage. With the help of our undergraduate interns, I have been collecting data on these antipredatory morphologies across groups of echinoids.

Collecting data from so many specimens is no easy feat during a global pandemic. Thankfully, recent years have given rise to online databases and collections such as IDigBio. While it is no replacement for traveling to a museum to search for specimens, using images downloaded from IDigBio, our interns and I can still view hundreds of specimens from museums around the world. Through these virtual collections, we can digitally measure and categorize specimens and their antipredatory morphologies.

As an undergraduate student, I was unaware of some of these resources that were available to me, and so I feel as if they are perhaps unknown to undergraduate students who may be unable to work hands on with museum specimens for any number of reasons. With the current pandemic, the need for digital collections and databases is that much clearer. I am incredibly lucky that I am still able to continue my research and that my project may provide internship opportunities for the undergraduates involved, and much of that is due to the digitalization of museum collections.

Fig 4. Goniocidaris tenuispina (USNM E0001335), a sea urchin with highly ornate and long spines. This specific specimen is one of hundreds observed from collections that have been digitalized and made available through IDigBio. This image is from the Smithsonian and is from the NMNH Extant Specimen Records. There is a Creative Commons license (CC0) associated with it, so it is not subject to copyright.

Niklas Hohmann, Master student in Paleobiology

What is your favorite part about being a scientist and how did you get interested in science in general? The best part are the findings that completely contradict your intuition! Discussing these findings with other scientist and finding out where and why the intuitions failed are the moments where I learn most. I always loved these learning moments that spark curiosity, so aiming for a career in science was a natural thing to do.

In laymen’s terms, what do you do?  I study how parts of dead animals such as mussel shells are turned into fossils. This sub-discipline of paleontology is called “taphonomy”, which is Greek and roughly translates as “the science of burial”. The focus of my research to find out how much information about past environments is lost when fossils form. Some shells might for example be very fragile, so finding few fossils of them is not necessarily evidence that they did not play an important role in the past ecosystem.

How does your research contribute to the understanding of climate change, evolution, paleontology, or to the betterment of society in general? Before 1950, very little information about ecosystems was collected. This makes it difficult to assess the impact humans had on nature simply we do not really know how nature looked like 500 or 1000 years ago. By developing tools to reconstruct these ecosystems from fossils, I hope to contribute to the understanding how nature looked like in the past so we can better protect it for future generations.

What are your data and how do you obtain your data? All data I use was previously published by someone else and I compile it from the literature for specific questions I am working on. Typically this would be information about shells that were found in a drillcore, their material properties that were determined in a lab experiment, and the environmental conditions where the core was taken.

Aside this empirical data, I borrow concepts from chemistry, physics, and different branches of mathematics for modeling. This can lead to interesting analogies: The way shells are distributed in the sediment is similar to the way heat is migrates through a solid medium, which is in turn tightly connected to particle movement.

The effect of sediment input on shell abundance in the sea floor. When sediment input is low, many old shells will be found at the sediment surface. Typically the ages of shells found at the same place differ by hundreds of years, a phenomenon called time-averaging. When sediment input is high, shells are buried quickly, which protects them from destructive processes close to the surface.

How has your research have you been affected by the COVID-19 pandemic? A lot of scientists that depend on access to labs were having troubles getting their work done due to the social distancing measures. Also many of the side jobs that are crucial for students were not available anymore, which put a lot of financial pressure on them.

My research has not been affected much, but all the conspiracy theories surrounding COVID-19 have strengthened my belief that science communication should be a central part of scientific practice.

What advice would you give to aspiring scientists? If you’re already in academia: Don’t specialize too early and look for a mentor you get along with. In general: stay curious and ask all the questions. Especially the ones you think are stupid.

Isaac Magallanes, UChicago Ph.D. Graduate Student

Photo taken at Ghost Ranch, New Mexico in the summer of 2018. I was helping with the GABI RET 2018: The North American Connection.

What is your favorite part about being a scientist and how did you get interested in science in general? As a scientist, I enjoy traveling and meeting/learning from people with a diversity of research interests. When I was a kid, I was always curious and interested in the world around me. I would watch PBS shows like NOVA and Nature with my dad. It didn’t matter to me whether I was learning about giant baleen whales or tiny African ant colonies, I enjoyed it all.  Although I was never able to visit a museum or attend a science camp during my childhood, the time spent with my family watching these programs laid the foundation for what would eventually become my passion and career path as an adult.

Although my parents fostered my interest in science, I never saw myself becoming a scientist. I believed I would grow up and do manual labor like my father. As a kid I would often assist my dad with an odd job or install carpet with my brother in law on the weekends. I did not see myself going to college, much less applying for graduate school.

Had it not been for the encouragement from my parents and high school English teachers, I would not have attended Cal State Fullerton as an undergraduate. Although I began my academic journey as an English major, I found myself becoming more interested in science. During this time, I enrolled in Geology 101 to fulfill a gen ed requirement and met my undergraduate advisor Dr. James Parham. He presented the course material in an accessible manner by using local examples when discussing geology and paleontology.

This class became the spark I needed to change my major and embark on the academic journey I am on today. He has and continues to be a great mentor and friend.

Photo taken in Washington Park near the University of Chicago.

In laymen’s terms, what do you do?   To be concise, I study ancient vertebrate organisms and the processes that shape their morphology (shape). The term morphology can refer to many different things but I when use it I mean the shape of bones. Throughout my journey this has taken many forms.

As an undergrad, I described a new species of extinct fossil walrus from Southern California. My research also summarized the diversity and geographic distribution of fossil walruses as a group during the last ~18 million years.

As a masters student at the University of Florida, my research focused on studying paleoecology and reconstructing the dietary preferences of extinct mammal herbivores (horses, camels, rhinos, and elephant ancestors) from North Central New Mexico that lived ~16.9-6.7 million years ago.

What are your data and how do you obtain your data? In other words, is there a certain proxy you work with, a specific fossil group, preexisting datasets, etc.? It largely depends on the project, but I primarily rely on museum collections. In some cases, I have collected fossils for my own research through field work, but often I hop on to other student’s field expeditions to lend a helping hand. Camping and hiking are some of the many perks of being a paleontologist that I enjoy.

What methods do you use to engage your community/audiences? What have you found to be the best way to communicate science? In addition to conducting research, I also enjoy participating in scientific outreach. As a student, I have visited K-12 classrooms as a science expert, helped develop lesson plans with teachers, and participated in many pop-up museum events. This is due in large part because my master’s advisor and mentor, Dr. Bruce MacFadden, actively encouraged me to always think about the broader impacts of science.

Recently, I have been working with the “Cosplay for Science” team (of which I am a founding member) in developing unique pop-up museum experiences that bridge the gap between science and pop-culture. My favorite part about being involved with “Cosplay for Science” is getting to attend comic-cons and discuss how science inspires our favorite comic-books, movies, books, video-games, and TV shows. Be sure to check out our Instagram (@cosplayforscience) and follow us for more info on cool pop-ups and interesting content from our contributors!

What advice would you give to aspiring scientists? I would say to not be hesitant in seeking new opportunities and experiences. When I began doing research at Cal State Fullerton, I felt like I was entering a whole new world. At first it was overwhelming, but I soon realized that I was not alone and found a strong support group in my lab mates and advisor. These relationships have continued through the years and served as great resource. Science is very fun, but it can also be hard, having the right team around you can help make the journey more enjoyable and fulfilling!

Follow Isaac’s updates on Twitter and Instagram!

Arsum Pathak, PhD Candidate & Climate Researcher

Collecting geospatial data on Cable Beach, Nassau, The Bahamas.

What is your favorite part about being a scientist, and how did you get interested in science?

Being a scientist feeds my curiosity for the real world around us. As a climate researcher, I combine natural and societal systems in a social-ecological approach to explore a complex global issue – climate change. The more I learn about the interlinkages of the natural and social systems, the more I realize about their synergies, and the more fascinated I am by the world around us. And the fact that I get to travel to beautiful places definitely helps!

I have been interested in science ever since I can remember. From a young age, I enjoyed learning different subjects, however, science always seemed the logical choice for me. It constantly stimulated my curiosity and interests leaving a thirst for learning more that continues till date. Over the years, science has shaped me to be a logical thinker and problem solver and my love for the subject grows each day.

What do you do?

Example of hard infrastructure for coastal protection, Nassau, The Bahamas.

My research interest lies at the science-policy interface with a focus on climate change, sustainable development, and Small Island Developing States. I am particularly interested in exploring climate adaptation that is synergistic with the broader Sustainable Development Goals (SDGs) of the coastal economies. My dissertation research employs a holistic theoretical lens of social-ecological systems that combines ecological and societal systems with the conceptual frameworks of vulnerability and resilience to guide climate adaptation and sustainable development. To understand these cross-cutting and complex concepts, I use a mixed-methods approach with a combination of quantitative and qualitative methods for data collection and analysis.

What are your data, and how do you obtain them?

I use both primary and secondary data in a mixed-methods approach. For writing my dissertation, I utilized geospatial data, surveys, and interviews combined with secondary policy and planning documents to answer my research questions.

Overwater villas in a Maldives’ resort where average elevation is less than a meter.

How does your research contribute to the understanding of climate change and the betterment of society in general?

Through my research, I aim to understand the ways how coastal communities will evolve and adapt in the face of future climatic change, particularly, rising sea levels and storm surge. My broader goal is to look for practical and creative solutions for climate adaptation that also supports the sustainable development of coastal areas.

Arsum is a PhD candidate at the University of South Florida. To learn more about her and her research, head to her website here