Intergovernmental Panel on Climate Change (IPCC) I: Current Climate-Driven Impacts

Andy here –

Teaching about climate change this year took a toll on me. I’m normally a resilient and fairly hopeful person, but diving into the current and future impacts of climate change commonly leaves a person shell-shocked. How do climate scientists cope with existential dread?

Scientists are people too. Some of us are young, many of us have kids. It is difficult to stare this problem in the face day in and day out, without feeling like you are watching a slow motion train wreck, with your elected officials stepping on the gas rather than using the brakes. I’ve decided that I’m going to share those feelings with other people. We’re starting with the current impacts. A second post will follow with the basics of climate modeling, and finishing with what we think will happen next.

What follows here is a small, incomplete collection of current climate-driven impacts and assorted links to other information. I’ve tried to keep it to just impacts that are established in the Intergovernmental Panel on Climate Change (IPCC). These are things that science can firmly establish as happening right now due to climate change.

Hydrological (Water) Cycle

Data showing percent of days per year with much below normal rainfall amounts (brown bars) and much above normal rainfall (green bars) within the continuous U.S. Notice that as you move from 1910 to 2010, the length of the brown bars decreases, while the length of the green bars increases. This indicates that there has been increasingly more days with rainfall. Data from NOAA U.S. Climate Extremes Index (CIE).

We can currently say there are substantial changes to where and how rain and snow fall because of climate change. These changes have altered our ability to use water, both in quantity and quality. If we look at Michigan as an example, it has an increase in yearly precipitation of 2/3 of an inch per decade since 1960. Massachusetts has seen >1 inch per decade (data here). Other states are not as lucky, and are currently seeing a decrease (e.g., California). Our freshwater is increasingly contaminated due to both low (drought) and high (flood) conditions in many locations in the US. 10% of counties are currently under high or extreme risk of a water shortage.

We, as humans, are at the start of these changes as well.

If you’re curious what the US government has to say about water use changes, click here for the National Climate Assessment Water Use (from 2014) page. It also has very scary maps!

IPCC: In many regions, changing precipitation or melting snow and ice are altering hydrological systems, affecting water resources in terms of quantity and quality (medium confidence).

Click here to explore the National Climate Assessment site’s findings from 2014 on water supplies.

Animals

We can also say that animals, plants, and other organisms have had responses to climate change. Coral reefs are the easy and moderately better-known connection, what with nearly 50% of the Great Barrier Reef corals dead in the northern section. Polar bears are similarly simple. With the arctic warming faster than the globe, 3/19 tracked polar bear populations are shrinking, while we don’t have enough data to say anything about the other 9/19. At least one of the ‘stable’ populations has shrunk since 25 years ago (stability is a ~12 year average). More warm winters mean more ticks in moose territory. A warmer West coast means stressed salmon. And so on.

While a projection (estimation based on current data), which I’m trying to save until later, click here for a map visualizing how species will need to move to maintain their proper habitat in a climate-shifting world.

IPCC: Many terrestrial, freshwater, and marine species have shifted their geographic ranges, seasonal activities, migration patterns, abundances, and species interactions in response to ongoing climate change (high confidence).

Crops

Climate change also has a negative effect on crop growth. Unlike what Lamar Smith has written (R-TX, head of the House Committee on Science, Space, and Technology), we do not expect there to be a benefit of increased CO2 in plant growth. Temperature effects far outweigh the small growth boost of higher CO2, and will lead to decreased seed yields. Climate change will shift where things grow; in some areas of India that used to get more snow there are new potato crops growing now with the milder winters. That’s good, but it’s quite the outlier. Wheat, rice, maize, soybean, barley and sorghum all respond negatively in rising temperature. Wheat production has already dropped 5.5%, and Maize by 3.8%. That is with our limited (in the face of what is projected) temperature changes so far.

Click here for an article by Scott Johnson that goes into more detail.

IPCC: Based on many studies covering a wide range of regions and crops, negative impacts of climate change on crop yields have been more common than positive impacts (high confidence).

Graph of projected increases (cool colors) and decreases (warm colors) of crop yields in the coming decades under increased warming. Notice how decreasing crop yields are more prevalent from 2010-2029 to 2090-2109. Image from IPCC (2014).

Extreme Weather Events

A) Percent of summer days when maximum temperatures exceeded long-term daily 95th percentile (the hottest recorded temperatures) from 1880 to 2005 over Western Europe. B) Heat wave intensity (number of days heat waves lasted) in Western Europe. Data from the Norwegian Meteorological Institute, 2013.

Climate change also increases the chances of having extreme weather events. Importantly, we can’t say that an individual hurricane is directly a result of climate change. We can say, however, that they are more likely. We can say that they’re made stronger, when they do happen. Harvey and others aren’t because of climate change but they’re more likely to happen and be worse because of it. Storms like Harvey, or Maria, or Irma, or Ophelia (which even hit the UK!) are more likely, and therefore more frequent, because of our warmer world.

Wildfires (click here for more details) are also made more common, due to drier conditions in some areas. So are floods, where there’s an increase in precipitation. And heatwaves. And on, and on.

This will obviously stress our systems to care for those affected. Given this summer and fall, I shouldn’t really need to back up that claim with supporting data.

IPCC: Impacts from recent climate-related extremes, such as heat waves, droughts, floods, cyclones, and wildfires, reveal significant vulnerability and exposure of some ecosystems and many human systems to current climate variability (very high confidence).

Economic Impacts

Climate change has cost us money, and it will likely continue to cost us. We can say this with a high degree of certainty. Wildfires, floods, storms, droughts, earthquakes, tsunamis, all have a monetary cost. The insurance industry is well aware of the increasing trend in the costs, and so keeps track. We can divide the cost of these natural disasters into things that will be altered by climate change (wildfires, floods, storms, droughts, so on) and those not affected by climate change (earthquakes, tsunamis, etc.). This acts as a nice check against our buildings being more expensive, disaster relief being more expensive, or something like that. When we do this, all of the climate-related costs are increasing dramatically (click here for more details), while those not affected by climate change are only increasingly slightly. The number of climate-related (or extreme-weather) disasters is increasing, while the number of earthquakes is flat.

IPCC: Direct and insured losses from weather-related disasters have increased substantially in recent decades, both globally and regionally.

Ocean Temperature Changes

Top: Observed global annual averaged land and ocean surface temperature anomalies. Bottom: Same data as above, but decadal averages. Grey boxes represent uncertainty. Image from IPCC (2014).

Many of the ocean acidification impacts are similar or work alongside the impacts of increases in ocean temperature (click here for more details). Two examples: Corals bleach primarily due to temperature and their ‘skeletons’ fall apart in response to the pH. Similarly, when temperature rises, krill reproduce in smaller numbers. Krill are a key part of the food chain for things that people find cute, like penguins, seals, and many whales. Together, if those larger animals are stressed or starve, their predators die too.

Warmer water also expands, so a warmer ocean means that sea-level rise occurs more as well. This can magnify the storm surges, amplifies the effect of the melting glacial waters, and is generally a very bad thing.

Oh yeah, and the rate that the ocean is warming is accelerating.

Ocean Acidification

Many things have changed in the oceans due to the increase in carbon dioxide in the atmosphere. The first is that the ocean has absorbed quite a bit of that carbon dioxide. The pH has changed by 0.1 units since the industrial revolution. pH scales are not linear, so this actually is a 30% increase in acidity.

Marine life obviously feels this massive change. Because they are smaller and more fragile, larval stages of various organisms or plankton feel the effects first. While there are other things at issue (though research is working on detangling the others: water quality issues, low oxygen, or changes in diseases, etc.), the current rash of losses in the oyster industry are at least partially due to changes in acidity. The oyster industry is a $100-million-a-year industry. Click here for more details.

Corals, too, are stressed. Coral bleaching is due to temperature, but the material that corals make their skeletons out of is susceptible to acidification. It makes it harder for them to reproduce, grow, and live. They also dissolve and erode faster under higher amounts of acid.

There are currently more than a million other species living in coral reefs, making reefs some of the greatest spots of diversity on Earth.

Sea Level Rise

Top: Average sea ice extent in millions of km squared for the Arctic and Antarctica from 1900 to 2010. The Arctic is melting at an alarming rate. Bottom: Global average sea level rise in meters from 1900 to 2010. Image from IPCC (2014).

Sea level has risen between 10-25 centimeters. Because much of the coast is really flat, that means much more area has been lost than it appears. We think that the loss to property values is between $3-5 billion a year. In structural loss, it is $500 million. We spend a lot of money to keep the coast where it is too; like the $14 billion Louisiana is expecting to put into coastal barriers along the Mississippi River delta. In other areas, the coast just erodes and land disappears into the ocean. Click here for more details.

Click here for a neat NOAA page that lets you see what happens as sea level rises.

We know sea level rise also has a cost on communities and lives. An entire community, Shishmaref in Alaska, has lost 2,500 to 3,000 feet of land in 35 years. Other communities, Kivalina, Newtok, Shaktoolik, and others (31 in total) need to be moved according to the Army Corps of Engineers. At least one community has voted to move to the mainland, but without funding to move, cannot.

Marginalized Communities

Climate change is a volume knob for social justice issues. That volume knob is sensitive.

Communities that are marginalized (have less political power, less money, etc.) are far more at risk in a changing world. If you have less power in society, odds are that a society under stress from climate change will be less likely to support you in the face of needs (even a lesser need) of a more powerful,other group.

This is referred to as ‘Climate Justice’. The People’s Climate March in Washington, D.C. (2017) was a wonderful example of how this has been embraced. From what I could tell, there were far more people there interested in social justice (indigenous communities, religious communities, etc.) than the scientists or folks who allied themselves with science at the march. It’s called the People’s Climate March for a reason. Click here for the NAACP’s page on Climate and Environmental Justice.

There is no clearer example than what happened and is currently happening in the US in 2017. Puerto Rico is not a state. Florida and Texas are. The US response to Puerto Rico which, again, is a part of the United States of America is the textbook example of this. Puerto Rico does not have representation in the federal government, so is ‘less important’ from a hardline (and inhumane) political point of view. The differing response from the federal government is a direct and obvious example of this IPCC finding.

Click here for more details on climate justice.

IPCC: Differences in vulnerability and exposure arise from non-climatic factors and from multidimensional inequalities often produced by uneven development processes (very high confidence). These differences shape differential risks from climate change.

Summary

Climate change is currently changing the water cycle, changing how water resources can be accessed. We’ve seen that animals and plants are already shifting their habitats due to climate change. A specific, but very human-centric part of that is how crops are and will respond. Harvests, in bulk, are down for many of our grains. Climate change has already cost us lots of money, and will continue to.

Lastly, but probably most importantly, climate change is currently felt by disadvantaged peoples disproportionately. The US response to Puerto Rico which is a part of the US is the textbook example of this. Puerto Rico does not have statehood, so is ‘less important’ from a hardline (and inhumane) political point of view.

We cannot, scientifically, say that Maria and Harvey and Irma and Ophelia are because of climate change. Attribution is difficult due to the statistics involved. We can however say that the scientific prediction for what happens in a warmer world is larger, more damaging and frequent storms. That is what we experienced in 2017.

References

IPCC, 2014. Climate Change 2014: Synthesis Report. Contribution of Working Groups I, II, and III to the Fifth Assessment Report of the Intergovernmental Panel on Climate Change (Core Writing Team, R.K. Pachauri and L.A. Meyer, eds.). IPCC, Geneva, Switzerland, 151 pp.

‘Extreme Climate Events in Europe: preparing for climate change adaptation”, 2013. Norwegian Meteorlogical Institute, Oslow, Norway, 140 pp. 

Fossil Club Meetings

Kyle here –

Science has a rather odd role in society. Its achievements form the very foundations of modern civilization, yet, to many, science might as well be magic, obscure and inexplicable. Popular culture tends to make scientists seem like haughty priests in an ivory tower, keepers of arcane knowledge, augurs of great portents, and babblers of dead languages and incomprehensible jargon.

Time Scavengers hopes to change that impression by showing that scientists are ordinary people and science is not as unfamiliar or unapproachable as it might initially seem. While some disciplines may have sizeable barriers to entry—think molecular biology or high energy particle physics—others are far more accessible, particularly ornithology (as “bird watching”), astronomy (as “stargazing”), and, of course, geology and paleontology (as “fossil collecting”). Indeed, these fields are indebted to hundreds of years of contributions by experienced naturalists who were amateurs in name only.

For what is an amateur but someone who takes up their passion solely for its own sake? Paleontology is often known as a “gateway drug” for science, and with good reason: it’s hard not to be entranced by immense dinosaur skeletons at a museum, or fossil shark teeth glistening on a beach, or an ancient coral reef eroding out of a neighborhood construction site. Fossils spark the imagination. Wherever there are fossils, there are people inspired to collect them.

Dry Dredgers prospecting the fossil-rich blue shales of the Upper Ordovician Kope Formation, southeast of Alexandria, Kentucky.

And wherever there are fossil collectors, chances are there is also a local fossil club. Cincinnati is one such place. Built on the banks of the Ohio River and surrounded by 450 million year old shales and limestones packed with a wealth of fossils, the city has a strong tradition of amateur paleontology. Curious locals have been collecting brachiopods, bryozoans, trilobites, cephalopods, and other Ordovician fossils from Cincinnatian outcrops since the 1800s. Many published their findings and became nationally and internationally recognized geologists.

This legacy of citizen science lives on today in the form of the Dry Dredgers. Founded in 1942, the Dry Dredgers are the oldest fossil club in the United States, having recently celebrated the 75th anniversary of their founding in April of 2017. The club was formed in close collaboration with the geology department of the University of Cincinnati, a relationship that continues to this day.

Piles of MAPS Digest, an amateur paleontological publication put out by the Mid-America Paleontology Society.

Like most other amateur paleontology societies, the Dry Dredgers has regular field trips and meetings. The latter are held on the campus of the University of Cincinnati monthly during the school year, usually on the evening of the last Friday of the month. Free and open to the public, the meetings typically follow a consistent structure.

First, a Beginners Class convenes before the main meeting, providing basic paleontological instruction to new members and children. The more experienced members also frequently show up early to socialize with their friends. Light food and drink is usually available. Collectors share their recent finds, try to identify unusual specimens, and tell a few tall tales. The desks are always piled with fossils and fossil literature, open for all to see.

At the designated time, the club President calls the meeting to order. They then proceed to introductions, where new members and visitors tell who they are, where they’re from, and what made them decide to attend the meeting. After this rigorous interrogation, the President begins the night’s entertainment with the door prize raffle, a random giveaway of small fossils, minerals, books, and other geological paraphernalia.

A snapshot from the September 2017 Dry Dredgers meeting.

Then the main program commences: a lecture by a graduate student, professor, distinguished amateur, or other interesting character. The talks are usually an hour or so in length, focusing on a particular aspect of the speaker’s research or experience. Some are travelogues, slideshows of faraway mountain ranges and mouth-watering fossil deposits. Others focus on a particular fossil or group of fossils—trilobites and echinoderms are persistent favorites. And yet others can be quite technical, delving into PhD-level research on paleoecology and taphonomy. Whatever the topic, the audience invariably grills the speaker with a host of questions at the end of the lecture.

Nautiloid expert John Catalani speaks at the September 2017 Dry Dredgers meeting, discussing the spectacularly preserved mollusk fauna of the Mifflin Member of the Platteville Formation, an Upper Ordovician rock unit exposed in Illinois, Iowa, Minnesota, and Wisconsin.

Following the lecture, the meeting wraps up with additional business. Any professional paleontologists in attendance give a report of what they are doing: papers published, students graduated, classes taught, conventions attended, and the like. Upcoming events and other miscellaneous things are announced. Then the meeting is gaveled to an end.

Some hardy members stay long after the meeting proper, socializing late into the night. Fossils are shared, bragged about, and identified. Any remaining refreshments are consumed. Plans are made for future excursions. The last people typically trickle out around 11:00 PM, tired but satisfied.

A slab of limestone containing well-preserved mollusks from the Mifflin Member of the Platteville Formation, from a locality in northwestern Illinois. A showcase specimen brought by John Catalani to the September 2017 Dry Dredgers meeting.

For more on the Dry Dredgers, visit their website at www.drydredgers.org. The site offers a feast of paleontological information as well as plenty of photos of fossils, field trips, and meetings.

Unfortunately, chances are that you may not live near Cincinnati. However, many other fossil clubs are scattered across the United States, from North Carolina to Texas to California and almost every state in between. The FOSSIL Project has compiled a list (click here) of dozens of such organizations. Chances are, there’s one near you!

A pair of upside down cheirurid trilobites, another beautiful specimen from the Mifflin brought by John Catalani to the September 2017 Dry Dredgers meeting.

Editing Science Chapters

Adriane here-

The sign in front of the IODP building in College Station, Texas, on the Texas A & M University campus.

Last summer, I participated in a scientific ocean drilling expedition (check out my previous posts here and here). More simply, I spent two months on a ship in the Tasman Sea, recovering sediment cores from the seafloor. We drilled the newly-named continent of Zealandia to determine the geologic history of the now-submerged continent. I sailed with about 30 other scientists from different backgrounds, which means that we learned a ton from the cores we recovered and learned  a lot from one another.

But all this new knowledge is useless if it isn’t written up and available to other scientists. So while we were on the ship, we wrote up our findings in documents we call ‘Site Chapters’. A site is what we call each new location where we drill. The scientific results from each site will eventually be published into chapters available online to the public.

While we were on the ship, the scientists had only a limited time to spend writing up their site chapter sections (every different group on the ship contributes a different section to the chapter; for example, as a paleontologist, I was only responsible for writing up the chapter section that deals with fossils). This writing time-crunch often leads to good, but not great, writing and figures. Thus, there comes a time after the expedition when some of the scientists that sailed together meet up for a week and thoroughly edit all the chapters.

At one point, I was working on our Biostratigraphy sections with two laptops! Thankfully, we were supplied plenty of snack and coffee to keep us motivated, as we had to be alert and pay attention to every little detail while editing!

At the end of January, the science party, including myself, met at Texas A & M University in College Station, TX. The university is home-base to the International Ocean Discovery Program (IODP), the program through which our expedition was organized and funded. Not all the scientists attend this ‘editorial party’, as only about 1 to 2 scientists from each group are needed. For example. there are two paleontologists (myself and another researcher from Italy) out of the original ten paleontologists that sailed working on the fossil-specific section for our site chapters. All in all, there was about 12 of us edition our chapters.

We spent 5 days in a room together, with access to all of our files and figures that we typed and created on the ship. In the room with us were 4 support staff, whose sole job it was to support us in any way they could. For example, they helped us edit figures, they gave us access to additional files that we needed, and they edited our chapters for grammar and spelling. The support team also formatted the chapters to a very specific style.

Beautiful echinoderms stuck in the limestone building blocks on the campus! Yes, I did try to get them out; no, I was no successful.

So why spend all this time on editing, drafting, and formatting a bunch of science-y stuff? There are several reasons! First, all IODP expeditions are paid for via taxpayer dollars, so the science that we do at sea and our major findings should be made available for public consumption. We anticipate that our chapters will be published online, available to everyone for free, in February 2019. Second, there is a diverse group of scientists that sail on the ship, and thus a diverse (and global) following of other scientists that are interested in what we did and what we found while at sea. Publishing our finding lets others interested in our science know what we collected, the age of the material, and if there is anything they could possibly work on in the future. The chapters also serve as a record and database (there will be an online database of findings as well) for others.

Editing is hard work, so it was important to take regular breaks and have some fun. Luckily, the weather was warm (or at least warmer than in Massachusetts) and sunny! Our lunches were catered everyday, and a few of us often went on walks around campus. Lucky for me, the limestone blocks that are used as walls around campus were filled with fossils, which provided me plenty of entertainment!

 

Diving into the Ordovician Sea

Maggie here-

My workstation while I was in Iowa at the Paleontology Repository. I spent a lot of time using a microscope to look at specimens and typing notes about each one on my computer. Color coded spreadsheets are my favorite way to organize all of this information!

I just got back from a whirlwind trip to the University of Iowa to do research in their paleontology repository. This collection is very interesting because it is a massive fossil collection that is actually housed in a geology department rather than a museum. That might seem weird to you, but it was a really nice environment to do research in. Their collections manager, Tiffany, has a small army of undergraduate students that are working with her to help maintain the collections, so the repository has a really nice homey feel to it. Museum work can be a little lonely at times (often you are the only person working in a small room surrounded by fossils), so having Tiffany and her undergrads pop in from time to time to chat was a nice break from research.

Picture of the paracrinoid Canadocystis tennesseensis. This is the mouth of the animal that has a strange S shape to it. Most paracrinoids look very different from one another (even their mouths are different!) but we can still get a lot of information about them and how they relate to one another by looking at their shapes and different characteristics.

So, just what do paleontologists do when they go to a museum to do research? Well, the simple answer is: we look at fossils. For any project that we are working on, seeing as many individual fossils of the same species or even same group gives us a better idea of what is “normal” for that organism. Your research question(s) will determine what in particular you are looking for or paying attention to on each fossil. So for my group that I’m working on, paracrinoids, I’m paying a lot of attention to details around the mouth, differences in plate shape (the plates that make up the body of the animal), and if there is any organization to their plating. This involves a lot of close up work with a microscope to look at these features and careful note taking about what I’m seeing. The data that I collect at museums has to be detailed so that when I get back to my university I can recall specimens and use that data in my analyses. Sometimes if we are lucky, we get to take some specimens back to our universities to keep working on them, but more often we just have our notes and photos to go off of. So our time and work at the museums is invaluable!

Image of the Repository in Iowa-all of these cabinets are full of different fossils from different places. This is the part of museums that most people never see, but so much of a collection is stored behind the scenes waiting for researchers to come look at them!

Research weeks at museums are really long, but the time flies by! You are hyper-focused on your research and your fossils. Even when you are not at the museum working, you are in your hotel catching up on the work that you are missing at home. Between looking at the specimens, taking notes, taking pictures, and trying to find patterns in what you are looking at, the days just fly by. But, I always like to save a little time for myself to wander around the exhibits and look at other specimens in the collection because you are surrounded by wonderful fossils! But for as long and hard as a week researching at a museum can be, the trips are always fun and you come away having learned a lot!

Time Scavengers travel to the Geological Society of America Meeting

Jen here –

The annual Geological Society of America Meeting is a gigantic academic conference for all fields that connect with the geological sciences. This year they had a record number of abstracts totaling 4,900! That is a lot of science from a whole lot of scientists. I have a few favorite things about large meetings like this: (1) you get to reconnect with old friends and collaborators; (2) you get to meet so many new friends and collaborators; (3) you learn at rapid speed through the 15 minute talks. Topics ranged from early life, the intersection of geology and archaeology, to planetary sciences.

This year I brought an undergraduate researcher with me who presented her poster on Sunday, I ran a session on Monday, and then I presented a poster on Time Scavengers Wednesday afternoon. So, I had a very full conference but it was so fun getting a handful of Time Scavengers together at the poster! We were able to get five Time Scavengers together for a photo. It’s difficult working a project working so far away from everyone but it was fun catching up with everyone.

About half of the Time Scavengers collaborators at the annual GSA meeting! Left to right: Kyle Hartshorn, Jen Bauer, Maggie Limbeck, Sarah Sheffield, and Raquel Bryant.

I purchased business cards printed before the meeting so we had information to hand out to people interested in the site. I gave away about half of the cards I purchased, so roughly 250 cards! I got a ton of positive feedback from scientists, educators, and students. Poster sessions are always very intimate ways of receiving a ton of feedback quickly. Unlike with oral presentations where audience members can maybe squeeze in one or two questions, poster presentations allow for more detailed conversation. This year they had an additional poster session so we set up at 8 AM and had a session from 9:30-11:30 AM and again from 4:30-6:30 PM.

Check out the recording of the poster presentation below:

Creating Digital 3-Dimensional Fossils

Jen here –

Maggie and I have been working with an undergraduate student, Audrey, to come up with a project for her last semester at the University of Tennessee, Knoxville. Audrey is a geology major and has an additional concentration in early childhood education. I’ve had a project that I’ve been absolutely dying to get started and I thought, what a perfect candidate for this endeavor.

Last year when we were packing up the department collection, I found these really beautiful large foraminifera models. Coincidentally, Audrey actually helped us pack these specimens up. As we know from reading Adriane’s research section (here), foraminifera are microfossils. We use microscopes to see these very small creatures. Microscopes are difficult to use in a classroom setting because even if you set them up in focus, it is very easy for someone to accidentally put it out of focus or move the slide. This makes it difficult for each student to have the same experience.

Setting up one of our enlarged Foraminifera models to scan with our NextEngine 3D laser scanner.
By having gigantic models, we can discuss details or shapes of these forams without having to look under a microscope. So, the project idea is to use our 3D laser scanner to create digital 3D models of these super big foraminifera models. Audrey will develop lesson plans that will incorporate these specimens into them. The ultimate goal will be to make the object files that contain the digital fossils and accompanying lesson plans available for teachers to download for free online.

We have done a few test scans and to see the exact specifications we should use for the models. In order to get the details of the specimens you have to rotate the model so that the areas where it’s being held on the stand can also be scanned. You can then combine the different angles into one model. The digital fossil can then be manipulated and moved around in 3D space. Now that the semester is wrapping up we will begin to scan these models more often so Audrey’s project can take off running next semester.

National Science Foundation Proposals

Jen and Adriane here –

The National Science Foundation logo.

We are both writing up National Science Foundation (NSF) proposals. A proposal is a submitted document to any money granting agency. If the proposal is approved, the scientist(s) or educators who submitted the proposal is then awarded a grant in the form of money. Jen is submitting a grant for postdoctoral fellowship programs (postdocs are commonly 1-3 year appointments where you are further trained in research and writing after receiving your Ph.D.), and Adriane is writing up a full proposal with her advisor and colleagues to get funding for part of her dissertation (the document that is written for fulfillment of a Ph.D. program).

But before we go into the parts of an NSF proposal and how they are written, a bit more background about what these things are. In short, large grants (such as NSF or NASA) are the necessity of a researcher’s life. They are really large grants, usually on the order of ~$30,000 to sometimes over $2 million, that fund a scientists’ research, salary, and often the salary of their graduate students. There are different NSF programs; these can be thought of as different categories to which you can submit a proposal to. For example, Adriane is submitting a proposal to Marine Geology & Geophysics, a program that is great at funding all sorts of paleoceaonographic research.

If the scientist who wins the grant works at a university, the university takes part of the grant money for operating costs. This is fair, as the scientists use electricity, water, etc. in their labs, and the university also employs people to clean the buildings and grounds. Because the money from NSF grants comes, in part, from taxpayer monies, the entire review process a submitted proposal will go through is very rigorous. The granting agency wants to be sure taxpayer dollars are going towards research that will lead to the betterment of society in some way, or will fill a knowledge gap in the sciences that will open the doors for further research and development.

OK, now back to the parts of an NSF proposal:

Although we are submitting for very different purposes the format is relatively similar. There is a project summary that is a one page summary of your entire project. This is basically a one-page summary of your proposal, what you bring to the scientific community, and how you will provide something to the public through your work.

Figure from Jen’s recent postdoctoral fellowship proposal. She is interested in identifying how minor shape changes are shown in the skeletal elements of blastoids. Each plate circlet has a different color and as you can see on each of the blastoids the pattern quite different. These differences in plate shapes and sizes greatly affect how the organism would feed and breathe. The time periods that each animal lived are written below the specimens. This means that these differences continue through time, indicating an importance either evolutionarily or ecologically.

The project description is the full proposal that includes an introduction/background, your objectives and goals, the methods you will use, and the significance of the project. In addition, it includes lots of images and tables to justify why you want to do the science. Depending on the program you are submitting to there may be other things you need to incorporate into the project description. For example, Jen had to include an institution justification, professional development, and career training into her fellowship applications. To put this simply, why should you go where you are proposing to go – what does the school have that will help you succeed is the institution justification. Professional development means how will Jen grow as an academic while at the proposed institution – with details of projects or other mentoring opportunities. Career training goes hand in hand with professional development, this could be workshops or certificate programs that Jen can enroll in while at the proposed institution.

Adriane experiencing writer’s block on a Sunday morning. We can’t emphasize enough that these proposals do take a lot of time, and although they are lots of work, it is a huge honor to produce a successful NSF proposal!

Although the primary portion of the proposal is the project description, there are a series of additional files you must compile. The budget justification is a place to outline a detailed budget for the proposed project and explain what the funds are being used. Biographical sketches of the submitting members are required as well. This is a short summary of your education, training, publications, and other activities usually fit onto two pages. Collaborators and affiliations must be outlined as individuals that will not be asked to review your proposal. During the rigorous review process, NSF wants evaluation of proposals to be as unbiased and fair as possible, so they ask for a comprehensive list of all collaborators over the past several years. The data management plan outlines what will happen with all the data collected. This is particularly important because a key aspect of science is reproducibility (=the ability to reproduce another scientists’ results using their data).

So, there are a lot of pieces to writing an NSF proposal, and a lot of time goes into writing one! But probably the most important aspect to come out of research funded by the public is the ability for researchers and scientists to give back to the public in some way – whether that be through volunteering, lectures and teaching, or making fun websites to explain the science we are most passionate about so that everyone has access to our information 🙂

Lightning Talks

Jen here –

Lightning or elevator talks are a great way to practice quickly sharing your research or work. Elevator talks are just as they sound, use the amount of time an elevator ride takes to share your research with another person. This is usually about 1-3 minutes, sometimes less! You can think of it sort of like a TV or radio commercial about what you do.

So, you want to make sure to share your science in a way that is not confusing to people in other scientific or academic fields. You want your research to be understandable to everyone, not just people that work on the same stuff as you. I find it helpful to pretend I’m talking to my mom who has a general understanding of what I work on but doesn’t particularly need to understand all of the minute details.

Below is my first official lightning talk. Since this is a video, I was able to include additional images and even an extra supporting additional video clip. I plan to produce a few a semester to practice communicating whatever my current research may be!

Here are some tools to begin crafting your own elevator talk!

Tracing respiratory structures

Jen here-

Cartoon blastoid cut in half so you can see the inside of the specimen. Each slice in the video is taken horizontal to the longest axis of the specimen. Figure modified from Dexter et al. (2008)
As I briefly discuss on my research page, here, part of my main research focus is to better understand respiratory structures of extinct animals. I’ve embedded a video on how I actually go about doing this. I’m using acetate peels to trace the structures through the body. These are essentially thin slices that allow us to section or take pieces of the fossil bit by bit. There is a general agreement about where the respiratory structures of blastoids (called hydrospires) connect to the exterior of the body. This means I can find this location on the inside to find the structures.

Once I have identified the structures, I can trace each one! I use a drawing pad and it can actually be quite relaxing tracing the folds. But it takes a lot of time and we have thought about figuring out how to make the computer do it for us but in some cases the outline is faint or you can see extra folds that are not actually part of the layer you are on. This happens when the slices of the fossil are taken not exactly perpendicular to the long body axis. The slices that I am working with were made in the 1960s and were done by hand so it is common that they are not exactly perpendicular.

In the video below you can see me tracing the hydrospire folds on a slice of Pentremites pulchellus. Once we trace all of the folds we were interested in, we can hide the images of the slices and all that remains are a series of stacked line drawings. We use another program to create the three dimensional structures.

Citation: Dexter, T.A., Sumrall, C.D., and McKinney, M.L 2008. Allometric strategies for increasing respiratory surface area in the Mississippian blastoid Pentremites. Lethaia, 42, doi: 10.1111/j.1502-3931.2008.00110.x

What exactly does a planktic foraminifera biostratigrapher do?

Adriane here, reporting once again from the beautiful Tasman Sea!

Double rainbow in front of the ship after a rainstorm.
You may recall from my previous post that I am currently sailing the RV JOIDES Resolution (the JR), a research vessel equipped with a drill rig that is used for scientific ocean drilling. During these scientific expeditions aboard the JR, a team of about 30-35 scientists and several crew members (the JR can hold a maximum of 130 people) drill sediment from the seafloor. Everyone on the ship has a job to do, and in this post I’ll explain what my role is while sailing in the beautiful Tasman.

I am sailing as a planktic foraminifera biostratigrapher (click here to learn more about what that means, and here to read more about how we use fossils to tell time) or someone who uses fossils (‘bio’) to tell time from the rock record (‘stratigraphy’). Altogether, there are 9 paleontologists on the ship. Some of us are here to tell the other scientist what age the sediments are that we’re drilling into, and some are using fossils to interpret paleobathymetry, or the water depth of the Tasman Sea at different times in Earth’s history.

Every scientist’s role on the ship is vastly important, but the first thing everyone wants to know as sediment cores are being drilled and brought onto the ship is how old this sediment is. This is important for a few different reasons: 1. There are specific intervals in Earth’s history that we (the scientists on the ship) want to drill into; 2. With age, we can tell what was going on in the geologic past in the Tasman Sea and further interpret the plate tectonic movements and environments when the sediment was deposited, and 3. We can modify our drilling plan including changing out the drill bits, slowing down the drilling, or speeding up the drilling process to best capture key intervals in Earth’s history. Thus, being a biostratigrapher is initially a very important job, and one that can affect the drilling operations on the ship. That’s why there are four main fossil groups that we use to tell time: the calcareous nannofossils (which are REALLY tiny), the planktic (and in this case, the benthic) foraminifera, siliceous radiolarians, and pollen spores. All of the fossil groups are important to have, as there are intervals in the cores where one or two fossil groups may disappear, or there may only be planktic foraminifera in one sample, etc.

But enough about biostratigraphy, now to show and tell you the entire process we go through when we receive a core on the ship!

The first thing that happens when a core is pulled up onto the core deck is that an announcement is made, such as ‘Core on deck!’. I then put on a hard hat and safety glasses and grab a bowl to collect the core catcher sample (the end piece of the core that literally keeps the sediment in the pipe as the core is brought back to the surface). The core catcher sample is the very last 10 centimeters of the core that is given to the paleontologists to analyze for age. The technicians bring the core from the drill floor to the core deck, where the core is cut into sections. While the core is being cut, another technician is given the core catcher to disassemble, remove the sediment, and give to the paleontologist.

In the first image, the technicians are bringing the core that has just been brought onto the ship onto the core deck. While 4-6 people wipe off, measure, and cut the core into sections, another person disassembles the core catcher and removes the sediment that is inside (center image). In this photo, the sediment is relatively hard, or lithified. When the core catcher sample has been removed and measured, part of it is given to the paleontologists so we can do biostratigraphy (right image).

Once I have the sample, I take it back inside to process. If the sediment is very soft, I simply rinse it over a screen to remove small particles (refer to my previous ‘From Mud to Microfossils: Processing Samples’ post). But recently on the expedition, the sediment we are recovering has been very hard. In this case, the core catcher sample is cut into thin slices using a rock saw, then small pieces are shaved off of a slice using a sharp-edged tool. These smaller pieces are crushed with a mortar and pestle for a few minutes.

Left image: the core catcher sample that was obtained here was cut into thin slices. One of these slices is then cut into smaller pieces using a small tool (center image). The smaller pieces are then crushed into finer grains using a mortar and pestle (right image). Surprisingly, most of the tiny fossils survive this process!

The sediment is then rinsed over two screens: a 2 millimeter (mm) screen to hold back the larger particles, and a 63 micrometer (μm) screen to catch the microfossils. The >2 mm rock pieces are then crushed again until there is enough particles in the 63 μm screen to analyze for planktic foraminifera. The sediment, which we call the residue at this point, is then put into filter paper on a stand to drain out the extra water. The filter paper and residue are then put onto a hot plate to dry (yes, there have been a few times when the paper has burned!).

In the left image, the pulverized sample is rinsed over a screen several times. Once there is enough sediment, at this point called the residue, to work with, it is put into a paper filter to dry (center image). When most of the water has dripped out, the filter paper and wet residue is then placed on a hot plate to dry (right image).

This is my microscope that I have used (and it’s really nice!) for the past 5 weeks at sea. Notice the paintbrush, jar of water, green dye, slide (white and black rectangular piece of cardboard in an aluminum holder), and black tray with the dried residue sprinkled across. When I find a marker species that tells me something about the age of the sediment, it is picked using my paintbrush and put onto the slide. In this sample, I found an important marker species, named Morozovella crater. The top right image is a picture taken through the microscope of the specimen dyed green. The bottom right image is a picture of a different specimen of the same species taken using an SEM (which is basically a fancy, very expensive camera used to photography very small fossils and minerals).
After the residue is dry, it is put into a small plastic bag with a label indicating exactly where it came from within each core. At this point, the residue is ready for analysis! At my desk, I have a microscope, a small tray, very small paintbrushes for picking very small fossils, a jar of water, and green food dye. Because the microfossils that I look at are made of calcite, they are very bright under the lights in the microscope. Dying the fossils a green color cuts down on the reflectance of light off the foram’s shells, and enables me to see the details of the fossil necessary to identify it to the species level.

There are usually many different planktic foraminiferal species in each sample, but there are only a few that I usually look for that tell me about the age of the sediment. These are called ‘marker species’. The geologic time at which a marker species evolves or goes extinct has been calibrated by previous scientists before me over several decades, so when I find a species, or when a species suddenly disappears, I have a chart that I use to look up when that speciation or extinction event happened.

Once I have a datum (reference point of time) and an age estimate for the residue sample I’m looking at, I write this information on a big white board in the paleontology lab. All of the other scientists look at this board frequently to determine the age of the sediment that is being brought up.

Education and Outreach Aboard the JR

Every IODP expedition has an education outreach coordinator that sails with the crew and scientists. This person’s job is to blog, post photos on social media outlets (Facebook), and conduct ‘Ship to Shore’ linkups. These are scheduled events with colleges, university, and K-12 schools where the education outreach coordinator gives the viewers a live tour of the ship and the activities that are going on. Because every expedition is funded by public monies from several countries, it is our responsibility as scientists to engage with the public and tell you all what we’re doing and what we’re learning. I’ve participated in a few ship to shore linkups already, and have really enjoyed talking with students of all ages about fossils, what we’re finding in the Tasman Sea, and how we use the fossils to tell time!

If you are an educator and want to participate in a Ship to Shore video event, click here to sign up!