Victoria Crystal, Geologist, Paleontologist, Podcaster

Victoria collecting fossils in the field

Growing up in Denver, Colorado, Victoria developed a passion for paleontology by frequently exploring the Denver Museum of Nature & Science. She later got her bachelor’s degree in geology from Colorado College and her master’s degree in geology and paleontology from the University of Colorado Boulder.

Victoria’s research focuses on understanding ancient ecosystems from the Late Cretaceous period (the time of the dinosaurs) and the early Paleocene (the time just after the extinction of the dinosaurs). She uses two different approaches to do so:

 1- Geochemistry – She measures the carbon and oxygen isotopes in fossil dinosaur teeth to learn about what the dinosaurs were eating and drinking. Tooth enamel is made up of several different elements, including oxygen and carbon. When the tooth enamel is made inside the body, the oxygen ingested by an organism from its drinking water is incorporated into the chemical structure of the enamel. And the carbon in the tooth enamel comes from the food the organism eats.  In this case, Victoria is looking at the teeth of herbivorous dinosaurs, so the food is plants. Victoria is interested in where the dinosaurs are getting their water and food. She asks questions like, “are dinosaurs drinking water from large rivers that flow down from mountains? Or are they drinking water from ponds and streams on the floodplain? And are the plants they are eating close to the banks of these water sources or are they farther away?”  

Victoria using a rock saw to collect fossils out of very hard sandstone

2 – Paleobotany – She also measures the size and shape of fossil leaves to determine what the average temperature was when the leaves were alive and how much it rained at that time. This helps her to determine what the climate was like in the past. She is also curious about how plant communities recovered after the mass extinction at the end of the Cretaceous. This is the extinction that famously killed the dinosaurs, but also about 60% of plant species in North America went extinct too. So when she looks at the size and shape of fossil leaves to learn about the climate of the past, she also analyzes how many different types of leaves there were. This helps her to answer questions like, “how soon after the extinction did plant communities start to increase in diversity (meaning number of plant types)? How soon after the extinction did we start to see forests and rainforests in North America?” 

Along with geology and paleontology, Victoria is also passionate about education and STEM outreach. She is a certified Environmental Educator and has spent summers teaching science and leadership at the Keystone Science School and the Logan School for Creative Learning in Colorado.  She is also the host of the podcast Ask a Scientist, in which she interviews scientists asking them questions written by elementary and middle school students. She encourages everyone, including aspiring scientists, to be curious about the world around them and to always ask questions.

Victoria using a dremel drill to sample dinosaur tooth enamel
Podcasting!

Arsum Pathak, PhD Candidate & Climate Researcher

Collecting geospatial data on Cable Beach, Nassau, The Bahamas.

What is your favorite part about being a scientist, and how did you get interested in science?

Being a scientist feeds my curiosity for the real world around us. As a climate researcher, I combine natural and societal systems in a social-ecological approach to explore a complex global issue – climate change. The more I learn about the interlinkages of the natural and social systems, the more I realize about their synergies, and the more fascinated I am by the world around us. And the fact that I get to travel to beautiful places definitely helps!

I have been interested in science ever since I can remember. From a young age, I enjoyed learning different subjects, however, science always seemed the logical choice for me. It constantly stimulated my curiosity and interests leaving a thirst for learning more that continues till date. Over the years, science has shaped me to be a logical thinker and problem solver and my love for the subject grows each day.

What do you do?

Example of hard infrastructure for coastal protection, Nassau, The Bahamas.

My research interest lies at the science-policy interface with a focus on climate change, sustainable development, and Small Island Developing States. I am particularly interested in exploring climate adaptation that is synergistic with the broader Sustainable Development Goals (SDGs) of the coastal economies. My dissertation research employs a holistic theoretical lens of social-ecological systems that combines ecological and societal systems with the conceptual frameworks of vulnerability and resilience to guide climate adaptation and sustainable development. To understand these cross-cutting and complex concepts, I use a mixed-methods approach with a combination of quantitative and qualitative methods for data collection and analysis.

What are your data, and how do you obtain them?

I use both primary and secondary data in a mixed-methods approach. For writing my dissertation, I utilized geospatial data, surveys, and interviews combined with secondary policy and planning documents to answer my research questions.

Overwater villas in a Maldives’ resort where average elevation is less than a meter.

How does your research contribute to the understanding of climate change and the betterment of society in general?

Through my research, I aim to understand the ways how coastal communities will evolve and adapt in the face of future climatic change, particularly, rising sea levels and storm surge. My broader goal is to look for practical and creative solutions for climate adaptation that also supports the sustainable development of coastal areas.

Arsum is a PhD candidate at the University of South Florida. To learn more about her and her research, head to her website here

Giving a Talk… In Ireland!

Adriane here,

Admittedly, the title of this post is a bit misleading; I didn’t actually go to Ireland to give a talk, in the midst of a pandemic. Rather, I was invited to discuss my research, path into science, and science communication by a graduate student, Luke O’Reilly, at the University College Cork through video conferencing software.

The University College Cork Wednesday Webinar banner

Luke recently began his journey into outreach by establishing a virtual seminar series for the graduate and undergraduate students and professors in his community, as a way to come together and continue learning about topics related to marine science. Luke’s endeavors have been highly successful; not only are those in academia participating, but also members of the general public! To date, about 300 people have signed up to tune into the talks! You too can sign up for this seminar series by clicking here.

Most of the talks to date have included folks presenting their research using figures and text on slides in a ‘traditional’ talk format. But Luke indicated that he wanted to do a more free-form format, to see how that worked with his audience. We both agreed that a lighthearted, off-the-cuff talk would be fun for us both, and we hoped this format helped our audience engage more with us and participate. Neither of us had done such a presentation in this format before.

The social media advertisement Luke made for my talk. He takes the time to craft one for each of his weekly speakers!

To prepare for this talk, I didn’t spend copious amounts of time making a slide show or modifying figures. Instead, I pulled up videos, images, Google Earth, and some slides from previous talks I’ve given. This way, I was able to screen share these resources with the audience when certain topics were touched upon. Personally, this format and style was really fun, kept me on my toes, and allowed me to share a lot of information pretty quickly. Luke indicated he received positive feedback about the talk format as well from audience members!

The topics we covered ranged all over the place, which was really fun! We began by just talking about living at sea for 2 months, and what that is like. I showed the audience a drill bit I had with me, and also showed a short video explaining how we conduct drilling in the middle of the ocean. Topics also then ranged from foraminifera and their ecology, the importance of the Kuroshio Current Extension to the Japanese fishing industry, how this massive current may change under human-induced warming, and we even touched on the topic of tectonics! Audience members asked questions throughout the talk via typing them into a chat box. Luke and I paused for questions throughout the talk, which really allowed for some more in-depth discussion of topics. We also had an additional Q & A session at the end of the presentation.

The cool thing about working in science communication is that I am always learning from other people, and this experience was no different. From experimenting with this talk format, I realized that mixing things up and doing something in a different way can be hugely successful. So take chances! Be bold! You never know how successful an endeavor will be until you try.

You can watch some of the recorded UCC Marine Geology Lectures here on YouTube!

 

Meghan Cook, Geoscience Education Researcher

As far back as I can remember, I have yearned to be an educator. I have fond memories of running a classroom in my parents’ back yard and giving my friends smiley-face stickers on their “assignments”. At that time (I was only 5 or 6!), I was unsure of the discipline direction or at what educational level I would like to teach, but I knew I had a visceral draw to understand the natural world. I also knew when I got older I wanted to have a family, yet not until I had my first child during the beginning stages of my doctoral program did I realize how challenging earning an education while building a family would be. 

I began my Ph.D. program in Geology in 2011 as well as a part-time adjunct professor position. I progressed with my studies until early 2014 when I became pregnant with our first child. I took a two-year respite from my Ph.D. program, allowing me to refocus my drive for the degree, and to find a job that could help support my growing family. When my official leave of absence came to an end in 2016, I was reinvigorated, raising two children (I had another child during the 2-year respite), and more confident in my role as a geoscience educator. I have since had another child who is now 7 months old. I hope to be an example for future women scientists that you can have both worlds: a family and an education. I unfortunately did not have many role models of women professors with children and I can only hope that my situation and choices can prove that choosing to have children and be a highly educated woman is a valid life goal.  

My research focuses on the affective (i.e., emotional) response of undergraduate geoscience students to traditional, real-world and non-traditional, virtual reality (VR) field trips. I primarily use qualitative means, such as interviews, to collect data. I ask students about their perceptions and feelings to better understand what aspects of a field trip positively or negatively impact their affective domain. The overall goals of my research are threefold: (1) to add to the extant literature pertaining to geoscience education best practices; (2) to understand the ways in which geoscience educators can grow and nurture the undergraduate geoscience community via traditional and non-traditional field trips, and; (3) to understand “what works” in the recruitment and retention of students into the geosciences by understanding the motivations and decisions of undergraduate geoscience students surrounding field trip experiences. My research has direct applications for making geoscience accessible for disabled students and applications in increasing the ability for geoscience participation, as well as in applying new knowledge to introductory major and non-major geoscience undergraduate courses to better recruit and retain students into the geosciences.

Dr. Karena Nguyen, Disease Ecologist

What is your favorite part about being a scientist, and how did you get interested in science?

The best perks about being a scientist are sparking wonder and creativity in others (especially the general public!), hearing about ongoing research in other fields, and conducting interdisciplinary research to integrate knowledge across disciplines.

During my time as a Ph.D. student, I did a variety of volunteer projects to engage members of the Tampa community. Science is for everyone, and the best scientists can and do communicate their work to the general public!

I stumbled into science the way most scientists do (I think) – completely by accident. I was set on being pre-med, but when I took Biology II my second semester freshman year, I fell in love with ecology. While everyone else was griping about the topic, the interactions between species and the environment made sense to me. The professor teaching the class noticed and took me under his wing. I started doing undergraduate research in his lab and took General Ecology a couple years later. There was one lecture on disease ecology and I still remember how it sparked these additional questions in my mind, e.g. how does the environment influence the spread of infectious diseases? I was totally hooked from then on and decided to pursue graduate school to answer these questions.

What do you do?

I am mainly interested in how environmental factors, especially temperature, influence interactions between parasites and their hosts. For my dissertation, I studied a human parasite, Schistosoma mansoni, and its intermediate snail host, Biomphalaria glabrata. The parasite must infect a snail before it can infect humans, and I examined how temperature influenced the parasite at various points of its life cycle, in addition to how temperature affected infected snails over time (see figure). I combined published data and laboratory experiments with mathematical models to predict how disease transmission may shift in response to changing temperatures under global climate change conditions.

The life cycle of a parasite. Image credited to @kes_shaw

What are your data, and how do you obtain them?

For my dissertation, I used a combination of published data and data from laboratory experiments to simulate how changes in temperature influence the parasite and its intermediate snail host.

How does your research contribute to the betterment of society?

Infectious diseases of humans and wildlife are increasing due to complex interactions between human population growth, changes in agricultural supply and demand, and global climate change. For example, human population growth is driving increases in agricultural development and accelerating global climate change. As more habitats are cleared for farmland, the likelihood of humans encountering wildlife that carry infectious diseases will likely increase. Global climate change may also influence how easily these diseases are spread between humans and wildlife. Thus, the broader goal of my research is to improve predictions of disease spread so that the public health sector can improve the timing and application of intervention methods. By examining how one part of the puzzle affects disease transmission, we can disentangle what to expect in the future as interactions between humans, animals, and environment continue to change.

Dr. Nguyen is now a postdoctoral scholar at Emory University. Learn more about Karena’s research on her website and by following her on Twitter @Nguyen_4Science

Molly Elizabeth Hunt, Paleontologist, Science Educator

What is your favorite part about being a scientist and how did you get interested in science in general?

My favorite part about being a scientist is sharing my science with others! Whether it’s creating educational activities, writing blog or social media posts, visiting classrooms, designing museum exhibits or just talking to people I am always happiest when I get to be a part of someone’s scientific journey. 

I was first introduced to geology when I was 5 years old and my great grandmother gave me a box of rocks and minerals. From there I began to read and collect more and more. It was then in high school, that I decided I wanted to focus on paleontology because of the great role model I had in my teacher Mr. Mike Koenig who took me fossil hunting. These two events and many others in-between sparked a passionate for earth sciences that has put me on to a track to a professional career as a geologist and paleontologist. 

In laymen’s terms, what do you do? 

As an undergraduate student in the Calede Lab at Ohio State, I study body size evolution or change over time. By looking at the teeth preserved as fossil from Gophers that lived around 30-11 million years ago, we can determine what the size of those creatures and then compare them to gophers that are alive today. 

How does your research/goals/outreach contribute to the understanding of climate change, evolution, paleontology, or to the betterment of society in general? 

By observing changes to the size of animals during different times we can understand how climate, and environment affect mammal groups. This is especial critical now as we are facing global climate change. Paleontology can use the past to plan and prepare for the future. 

If you are writing about your research: What are your data and how do you obtain your data? In other words, is there a certain proxy you work with, a specific fossil group, preexisting datasets, etc.?

I am use measurements of the teeth (toothrow length) of fossil gophers as well as calculations developed from living rodent training sets to estimate the body mass of these extinct species. I take photos of the toothrows and skulls of specimens in museum collections, which are input into a software to calculate lengths then I determine means and standard deviations for each species studied. For modern species we use weight in grams that has been published in scientific literature. This data is also put through computer analyzes with the incredible help of my advisor Dr. Jonathan Calede that can evaluate the evolution of body size over time, over geographic location, and within the phylogenetic tree. 

What advice do you have for aspiring scientists?

Never give up. Even if someone tells you that you will not make it, even if you have a bad day, even if you make a big mistake, even if you get a bad grade….YOU can do it. Believe in yourself and surround yourself with people who will always support you and work hard! 

Niba Nirmal, Plant Geneticist, PhD Candidate, Creative

Processed with VSCO with al1 preset

I’m Niba and I create notes about science (biology, especially plants!) and style (fashion, makeup, skincare)! I write in a physical journal, share photos on Instagram, and create videos on YouTube. I have always loved science – logical thinking, rationalizing answers, learning how to learn—and I also love style—fashion, beauty, skincare, modeling. As a scientist, I am taught logical thinking and rationalizing while cultivating a desire to learn. However, my life as a model is based on fashion trends, creating beauty, and skincare health. For a long time, these concepts existed as incompatible, separate parts of my personality. As I continue my journey as a female scientist and young model, I have integrated the different parts of my life to create my own distinct and compelling self. As I learn more about science and style, I would love for you to join me on my path at Notes by Niba . I’m now modeling, blogging, and beginning my third year as a PhD student studying the genetics of plant development.

I have always loved the process of learning, which led me to the scientific method. The scientific method can be applied to literally everything – working out, training my cat, as well as my experiments in the lab. In lab, I’m discovering how plants express genes to grow and develop. I am trying to understand how a gene control module puts tissues in the right place. This is a huge question in development because proper developing needs careful gene expression in time and space. Because gene networks control every biological process, my research benefits many other fields. For example, many human diseases are caused by impaired networks (ex. Cancer).

Processed with VSCO with al1 preset

Specifics: My research looks into the SCARECROW plant gene, which forms two tissues – the cortex and endodermis. This is done by a certain kind of cell division, where one cell becomes a cortex cell and the other becomes an endodermal cell. Without the SCARECROW gene, the original cell never divides and is just one fat mutant cell that acts like BOTH a cortex and an endodermis at the same time. Just like how the SCARECROW in Wizard of Oz doesn’t have brain tissue, these plants are also missing a tissue. But we don’t know what the proper SCARECROW expression is to form these two tissues. My research is to determine what kind of SCARECROW gene expression–not just the amount but also at what time–is needed to form cortex and endodermis. By using existing gene modules, I can create different gene circuits to figure out what kind of SCARECROW expression will make the cell divide and get the proper tissues in plant roots. I can see this division in real time in living plants with a super powerful microscope in my laboratory.

Plant research is essential, resulting in drought-resistant food crops, more effective medicines, clothing and fashion, etc. More than 30 THOUSAND plant species are medicinally used (ex. anti-cancer drugs and blood thinners). The world’s food supply is under threat due to population growth, water scarcity, reduced agricultural land, and climate change. As potential biofuels, plants are also important as a potential source of renewable energy. That means it’s critical to be able to detect, learn from, and innovate with our green plant friends. Our past, present, and future depends on plants.

As a scientist, I am pushing the boundaries of what humanity knows – it’s an incredibly fulfilling job and I am grateful for this privilege. 

Keep up with Niba’s updates by following her website, YouTube, or Instagram!

Ashley Ramsey, Staff Geologist for Geosyntec Consultants, Inc.

Professional Headshot.

What is your favorite part about being a scientist and how did you get interested in science in general?
My favorite part about being a scientist, why I chose science, and particularly why I decided to be an environmental consultant, is that the field is constantly changing, and there is always something new to learn, discover, or develop. Through my obtaining my undergraduate geology degree at Baylor University and my masters geology degree at The University of Tennessee, I was never sure what career path to take, but I knew that I liked to learn and do so at a very quick pace. Since beginning my consulting career just over one year ago, I have had the opportunity to study a multitude of contaminant impacts and remediation techniques for groundwater, porewater, soil, and sediment. Not only this, but every day I am fortunate to collaborate with scientists across the United States on a daily basis.

Step 1, wear proper PPE😊 Work can be a bit messy sometimes, but that’s half of the fun, right?!

In laymen’s terms, what do you do?
As a consultant at Geosyntec I conduct environmental contaminant investigations and remediations concerning chlorinated solvents, petroleum, metals, pesticides, and/or emerging contaminants. These contaminants are sourced from many historic and modern day industrial activities like dry cleaning and petroleum storage and sales among many others. My work over the last year and a half has been on sites located across state of Florida and have involved in soil, sediment, porewater and groundwater monitoring and sampling; contractor oversight; permitting; and the development and execution of proposals, remedial designs, and reports.

How does your work contribute to the betterment of society in general?
My work provides knowledge to clients and the public about the state of their environment and what steps we can actively take to better it. As environmental consultants we conduct investigations to ensure environmental contaminants are not migrating away from their source and that concentrations are not increasing. This work is extremely important as it ensures no harm is coming to the members of our community from the investigated contaminants as they go about their day to day lives.

What advice would you give to young aspiring scientists?
Keep at it! Sometimes you will have no idea which path to take and may become overwhelmed by those around you who already have their path determined. Take on a new project, study a new field, take that random class or field trip. By exploring every possible avenue, you will find your niche.

Measuring surface and pore water temperatures to provide a line of evidence for groundwater upwelling in a Jacksonville Creek.

Mattie Jensen, Microbiologist & Technical Manager

I am a Scientist.

It may be a little cliché, but like all scientists I know, I was always interested in science. It was one of those subjects in school that came naturally to me. By the time I graduated high school, I had taken all of the advanced science courses offered by my school, plus two college-level courses. You would think someone this driven by science would immediately jump into a science degree in college, right? Nope.

I attended college for graphic design. After a semester, I changed my major to photography. A couple semesters later, I changed my major to psychology – and that is where my real journey began. Eight years of hard work, studying all night while working multiple jobs to support myself through school, and I finally had my degree – my major was psychology, my minor was biology. I focused on a neuroscience approach to addictions and wanted to be a drug and alcohol therapist.

Along the way, I found myself working as an office manager for a microbiology laboratory. The work they did fascinated me, as I had many happy flashbacks to the courses I took in high school and college. As I worked my way through school, I also worked my way into the laboratory. Upon graduation, I jumped into a rigorous training program to become a microbiologist, led by an incredible mycologist and a snarky clinical bacteriologist. Seven years later – I run an environmental microbiology lab outside of Chicago for this company.

Long story short – plans change, but who you are at your core and what truly excites you remains the same. Science was always a part of me. I was always the kid questioning everything, asking Why and How, solving problems logically and methodically, taking horrible notes that somehow made sense to only me. I was weird. I got made fun of a lot. And I’m still weird. But I made a career out of it, so I’m really not complaining.

What Do I Actually Do?

I am a microbiologist, specialized in the indoor air quality, water quality, and industrial hygiene worlds. I don’t analyze any human-based samples, but I am responsible for keeping a lot of people safe. From pharmaceutical production, to the mold growing under your kitchen sink, to the water grandpa Joe uses to take showers at his assisted living facility… we’re on it.

Our clients go out and take a variety of sample types, and we analyze them for any potential pathogens that may be present. We do old-school, bench-top, human-driven science. We aren’t relying on fancy machines to analyze things for us, and sure our reference materials may be a couple decades old, but what we do is tried and true.

Why is this important?

Bacteria and fungi are amazing and mind-blowingly smart. They’ve been a part of our world since it began. Outbreaks happen, yes, but the type of work an environmental microbiologist does is all about being proactive. If a pharmaceutical company is producing medicine in a contaminated environment, we stop it from reaching you. If grandpa Joe is being exposed to potentially pathogenic bacteria in his water, we catch it and help remediate it. And even though your house is spotless and you would eat off of your floors, we highly suggest you don’t because you have six different types of mold growing under your sink.

The environmental world of microbiology is full of unsung heroes. If you don’t work for the CDC, no one really knows what you do or really knows why it’s important. But that’s okay, we’re all a bunch of nerds and don’t want the spotlight anyway. I still want to get involved in local colleges and reach out to inspiring young scientists because this world is dying. What we do isn’t even really taught in schools anymore, as more and more schools focus on clinical laboratory sciences and molecular research using expensive machines. Not saying any of that is bad, learning more and more about the world around us is a huge part of science, right? But we’re already fighting an anti-science, anti-vaccine movement right now, let’s not also let the bacteria around us win and party with the re-emerging viruses.

Are you a Scientist, too?

If you, too, are a kind-of-weird person, always asking why and how, never leaving any problem unfinished, maybe you’re a scientist too. Even if you can’t make up your mind in what you want to do with your life but you kind of relate to Mr. Spock on a personal level, maybe you’re a scientist too. If you are interested in a scientific field, do tons of research before settling down! There’s more to microbiology than clinical laboratories. I’d be happy to connect with you and tell you more!

Connect with Mattie on LinkedIn by clicking here!

Jen Gallagher, Geneticist

What is your favorite part about being a scientist and how did you get interested in science in general?

Me at my happy place. On the afternoon before a long weekend, I finally have time to come into the lab and dissect yeast.

My favorite part about being a scientist is going into the lab, doing an experiment, and discovering something that nobody else knows. My uncle was in grad school when I was a kid. He studied fracture mechanics in metals, or crackology, as I like to call it. I visited his lab and he showed me his million-dollar microscope. He was getting a Ph.D. so I decided I would, too. I wasn’t interested in engineering. I liked watching nature shows on PBS and biology in school. In high school, I learned about DNA replication. DNA has directionality and can only be replicated in one direction but there are two strands held together in the opposite direction. When you separate the DNA there isn’t enough space to copy the other strand. The cell solves this problem by making short sections of DNA of the strand that is facing the opposite direction and then gluing them together. These are called Okazaki fragments and I thought that was cool. Also, in that class, my teacher showed us statistics on how many people get undergraduate, masters, and Ph.D. degrees and all the different careers you could do with those degrees. So at 16, I decided to get a Ph.D. and do research in biochemistry. I searched for schools that had strong undergraduate research in a real biochemistry program. I didn’t want chemistry and biology class, but a dedicated program. Once I did start a biochemistry project, I decided that wasn’t for me. Biochemistry involves reducing reactions to their bare minimums, but life isn’t like that. So, I traded the cold room and purified proteins for genetics. I like asking the questions and having the cells tell me the answers.

In laymen’s terms, what do you do?

I investigate why genetically diverse individuals respond differently to the same stress, usually a chemical. Every chemical is a poison in the right dose but also can be a medicine. Water is essential for life is also toxic in high doses. Drowning is a leading cause of premature death. The stress response is a complex reaction. The first thing that happens is that cell growth is arrested. It’s like if your house is on fire. Once you see the fire, you don’t finish washing the dishes and then find the fire extinguisher. There are common responses to stress and then there are specific ones. To find out how the cell’s response to a specific stress, we exploit genetic variation within a species. I compare cells that can successfully deal with the stress to ones that can’t and determine what are the underlying differences that govern that. Depending on the stress we sequence genomes, measure the changes in gene expression or proteins. We work on yeast because in general people don’t appreciate being poisoned and don’t reproduce as fast as in the lab. Yeast have a generation every 90 minutes. Yeast are fungi and are more related to us than to bacteria. They have important applications in baking, brewing, and biotechnology. Yeast share many biochemical pathways with us and so by studying them, we can then extrapolate that to humans. In my lab we are working on glyphosate, the active ingredient in RoundUp, MCHM, a coal-cleaning chemical, and copper nanoparticles, a novel antimicrobial material.

What are your data and how do you obtain them?

I am an experimental geneticist. We have tens of thousands of different yeast strains in the lab. Most of these yeast come from other labs. The yeast community is generous, and these are all freely shared. To understand how RoundUp resistance occurs in nature, we also collect yeast from different environments. We have several sites with different RoundUp exposures. We started with a reclaimed strip coal mine, a state park, and the university organic farm. We have taken the public and students from local public schools to collect samples from these areas. We bring the samples to the lab and teach them how to coax the yeast out and then purify their DNA so we can sequence them. We thought that the mine would have the highest frequency of RoundUp resistant yeast because they spray that area every year with RoundUp. The park has been a state park since the 1930s and RoundUp was invented in the 1970s. RoundUp is a synthetic herbicide and not included in the list of herbicides and pesticides permitted on organic foods. We were completely shocked when we found that the organic farm had the highest number of RoundUp yeast and the mine had the fewest. There could be several explanations. One is that the yeast weren’t specifically resistant to RoundUp but whatever genetic changes that had been selected to gave it a selective advantage in that environment also conferred resistance. When we further investigated the histories of these sites we came up with another idea. The organic farm wasn’t always an organic farm. Two decades ago it was a conventional farm and from that previous exposure, the yeast became resistant and never lost it. The state park routinely uses RoundUp to combat invasive plants. There is also a power line that spans the canyon and they use helicopters to spray RoundUp so that trees don’t grow into the power line. The mine is used as a study site to find genes that are important for trees to grow on poor soil so that biofuels can be made. They started that study the year before I started collecting yeast so only a year of exposure was not enough to select for resistance. So now we have an even better study. We can go back every year to the mine and collect yeast. We can track RoundUp resistance as it happens.

How does your research contribute to the betterment of society in general?

We are exposed to and consume chemicals every day. Differences in how we respond to those chemicals in part depend on small differences in our genome. We use these genetic differences to find out how cells are metabolizing chemicals successfully and survive or unsuccessfully and die. When the human genome was sequenced, we thought that all its secrets would be unlocked. While tremendous advances in biomedical research could only have been done with this information, there is so much that we don’t know how to read. It’s like finally getting the keys to the entire library but all the books are written in a language that you taught yourself and they’re words that you don’t know how to translate. Based on a sequenced genome, we are not yet able to predict a person’s medical conditions or how a person will respond to drugs. The chemicals that we study are important agricultural and industrial chemicals. With the overuse of herbicides, we are now facing RoundUp resistant weeds. We don’t know how to combat this because we only partially understand how weeds become resistant. The active ingredient in RoundUp inhibits a biochemical pathway that plants, bacteria, and yeast have but humans do not. Therefore, it has been challenging to study possible effects of RoundUp exposure in humans. All known acute poisonings have been from the inactive ingredients and not the glyphosate. However, chronic exposure is time-consuming and complicated to study. We are using yeast to determine if there are other biochemical targets of RoundUp in yeast that humans may have. These studies can’t be done in plants because RoundUp exposure is lethal and prevents the synthesis of nutrients but yeast can be supplemented with the nutrients that RoundUp suppresses. Other chemicals like MCHM have limited toxicological information. Several years ago, a massive chemical spill contaminated the water supply in West Virginia. It caused headaches, nausea, and rashes and nobody knew why. MCHM changes how proteins fold and doesn’t have a specific target like RoundUp. By using this chemical we are studying how changes in protein folding regulate metal and amino acid levels in the cells. Fungal infections are difficult to treat because they are immune to antibiotics. Antibiotics work because they exploit fundamental differences in the metabolism of bacteria from humans. Yeast are more closely related to humans so there are fewer druggable targets. Copper is an effective antifungal material, but it is expensive, and metal has several drawbacks. By incorporating copper into cellulose-based nanoparticles, cheap, moldable, and biodegradable materials can reduce food spoilage and infections from medical devices.

What advice would you give to aspiring scientists?

Be prepared to fail. Failure is an opportunity to learn. In the example of the RoundUp resistance, the results were the opposite of what we thought. We can’t change the results, but we did further investigation and found an even more interesting story. I think of this as lost keys. My keys are always in the last place that I look. Why? Because I stop looking when I find them. If you think you know the answer, you stop searching. There is so much to discover and so many connections of which we are not aware. By challenging how you think about something you can overcome your assumptions and chip away at the unknown.

Head to Jen’s faculty page to learn more about her and her research by clicking here.