Mattie Jensen, Microbiologist & Technical Manager

I am a Scientist.

It may be a little cliché, but like all scientists I know, I was always interested in science. It was one of those subjects in school that came naturally to me. By the time I graduated high school, I had taken all of the advanced science courses offered by my school, plus two college-level courses. You would think someone this driven by science would immediately jump into a science degree in college, right? Nope.

I attended college for graphic design. After a semester, I changed my major to photography. A couple semesters later, I changed my major to psychology – and that is where my real journey began. Eight years of hard work, studying all night while working multiple jobs to support myself through school, and I finally had my degree – my major was psychology, my minor was biology. I focused on a neuroscience approach to addictions and wanted to be a drug and alcohol therapist.

Along the way, I found myself working as an office manager for a microbiology laboratory. The work they did fascinated me, as I had many happy flashbacks to the courses I took in high school and college. As I worked my way through school, I also worked my way into the laboratory. Upon graduation, I jumped into a rigorous training program to become a microbiologist, led by an incredible mycologist and a snarky clinical bacteriologist. Seven years later – I run an environmental microbiology lab outside of Chicago for this company.

Long story short – plans change, but who you are at your core and what truly excites you remains the same. Science was always a part of me. I was always the kid questioning everything, asking Why and How, solving problems logically and methodically, taking horrible notes that somehow made sense to only me. I was weird. I got made fun of a lot. And I’m still weird. But I made a career out of it, so I’m really not complaining.

What Do I Actually Do?

I am a microbiologist, specialized in the indoor air quality, water quality, and industrial hygiene worlds. I don’t analyze any human-based samples, but I am responsible for keeping a lot of people safe. From pharmaceutical production, to the mold growing under your kitchen sink, to the water grandpa Joe uses to take showers at his assisted living facility… we’re on it.

Our clients go out and take a variety of sample types, and we analyze them for any potential pathogens that may be present. We do old-school, bench-top, human-driven science. We aren’t relying on fancy machines to analyze things for us, and sure our reference materials may be a couple decades old, but what we do is tried and true.

Why is this important?

Bacteria and fungi are amazing and mind-blowingly smart. They’ve been a part of our world since it began. Outbreaks happen, yes, but the type of work an environmental microbiologist does is all about being proactive. If a pharmaceutical company is producing medicine in a contaminated environment, we stop it from reaching you. If grandpa Joe is being exposed to potentially pathogenic bacteria in his water, we catch it and help remediate it. And even though your house is spotless and you would eat off of your floors, we highly suggest you don’t because you have six different types of mold growing under your sink.

The environmental world of microbiology is full of unsung heroes. If you don’t work for the CDC, no one really knows what you do or really knows why it’s important. But that’s okay, we’re all a bunch of nerds and don’t want the spotlight anyway. I still want to get involved in local colleges and reach out to inspiring young scientists because this world is dying. What we do isn’t even really taught in schools anymore, as more and more schools focus on clinical laboratory sciences and molecular research using expensive machines. Not saying any of that is bad, learning more and more about the world around us is a huge part of science, right? But we’re already fighting an anti-science, anti-vaccine movement right now, let’s not also let the bacteria around us win and party with the re-emerging viruses.

Are you a Scientist, too?

If you, too, are a kind-of-weird person, always asking why and how, never leaving any problem unfinished, maybe you’re a scientist too. Even if you can’t make up your mind in what you want to do with your life but you kind of relate to Mr. Spock on a personal level, maybe you’re a scientist too. If you are interested in a scientific field, do tons of research before settling down! There’s more to microbiology than clinical laboratories. I’d be happy to connect with you and tell you more!

Connect with Mattie on LinkedIn by clicking here!

Jen Gallagher, Geneticist

What is your favorite part about being a scientist and how did you get interested in science in general?

Me at my happy place. On the afternoon before a long weekend, I finally have time to come into the lab and dissect yeast.

My favorite part about being a scientist is going into the lab, doing an experiment, and discovering something that nobody else knows. My uncle was in grad school when I was a kid. He studied fracture mechanics in metals, or crackology, as I like to call it. I visited his lab and he showed me his million-dollar microscope. He was getting a Ph.D. so I decided I would, too. I wasn’t interested in engineering. I liked watching nature shows on PBS and biology in school. In high school, I learned about DNA replication. DNA has directionality and can only be replicated in one direction but there are two strands held together in the opposite direction. When you separate the DNA there isn’t enough space to copy the other strand. The cell solves this problem by making short sections of DNA of the strand that is facing the opposite direction and then gluing them together. These are called Okazaki fragments and I thought that was cool. Also, in that class, my teacher showed us statistics on how many people get undergraduate, masters, and Ph.D. degrees and all the different careers you could do with those degrees. So at 16, I decided to get a Ph.D. and do research in biochemistry. I searched for schools that had strong undergraduate research in a real biochemistry program. I didn’t want chemistry and biology class, but a dedicated program. Once I did start a biochemistry project, I decided that wasn’t for me. Biochemistry involves reducing reactions to their bare minimums, but life isn’t like that. So, I traded the cold room and purified proteins for genetics. I like asking the questions and having the cells tell me the answers.

In laymen’s terms, what do you do?

I investigate why genetically diverse individuals respond differently to the same stress, usually a chemical. Every chemical is a poison in the right dose but also can be a medicine. Water is essential for life is also toxic in high doses. Drowning is a leading cause of premature death. The stress response is a complex reaction. The first thing that happens is that cell growth is arrested. It’s like if your house is on fire. Once you see the fire, you don’t finish washing the dishes and then find the fire extinguisher. There are common responses to stress and then there are specific ones. To find out how the cell’s response to a specific stress, we exploit genetic variation within a species. I compare cells that can successfully deal with the stress to ones that can’t and determine what are the underlying differences that govern that. Depending on the stress we sequence genomes, measure the changes in gene expression or proteins. We work on yeast because in general people don’t appreciate being poisoned and don’t reproduce as fast as in the lab. Yeast have a generation every 90 minutes. Yeast are fungi and are more related to us than to bacteria. They have important applications in baking, brewing, and biotechnology. Yeast share many biochemical pathways with us and so by studying them, we can then extrapolate that to humans. In my lab we are working on glyphosate, the active ingredient in RoundUp, MCHM, a coal-cleaning chemical, and copper nanoparticles, a novel antimicrobial material.

What are your data and how do you obtain them?

I am an experimental geneticist. We have tens of thousands of different yeast strains in the lab. Most of these yeast come from other labs. The yeast community is generous, and these are all freely shared. To understand how RoundUp resistance occurs in nature, we also collect yeast from different environments. We have several sites with different RoundUp exposures. We started with a reclaimed strip coal mine, a state park, and the university organic farm. We have taken the public and students from local public schools to collect samples from these areas. We bring the samples to the lab and teach them how to coax the yeast out and then purify their DNA so we can sequence them. We thought that the mine would have the highest frequency of RoundUp resistant yeast because they spray that area every year with RoundUp. The park has been a state park since the 1930s and RoundUp was invented in the 1970s. RoundUp is a synthetic herbicide and not included in the list of herbicides and pesticides permitted on organic foods. We were completely shocked when we found that the organic farm had the highest number of RoundUp yeast and the mine had the fewest. There could be several explanations. One is that the yeast weren’t specifically resistant to RoundUp but whatever genetic changes that had been selected to gave it a selective advantage in that environment also conferred resistance. When we further investigated the histories of these sites we came up with another idea. The organic farm wasn’t always an organic farm. Two decades ago it was a conventional farm and from that previous exposure, the yeast became resistant and never lost it. The state park routinely uses RoundUp to combat invasive plants. There is also a power line that spans the canyon and they use helicopters to spray RoundUp so that trees don’t grow into the power line. The mine is used as a study site to find genes that are important for trees to grow on poor soil so that biofuels can be made. They started that study the year before I started collecting yeast so only a year of exposure was not enough to select for resistance. So now we have an even better study. We can go back every year to the mine and collect yeast. We can track RoundUp resistance as it happens.

How does your research contribute to the betterment of society in general?

We are exposed to and consume chemicals every day. Differences in how we respond to those chemicals in part depend on small differences in our genome. We use these genetic differences to find out how cells are metabolizing chemicals successfully and survive or unsuccessfully and die. When the human genome was sequenced, we thought that all its secrets would be unlocked. While tremendous advances in biomedical research could only have been done with this information, there is so much that we don’t know how to read. It’s like finally getting the keys to the entire library but all the books are written in a language that you taught yourself and they’re words that you don’t know how to translate. Based on a sequenced genome, we are not yet able to predict a person’s medical conditions or how a person will respond to drugs. The chemicals that we study are important agricultural and industrial chemicals. With the overuse of herbicides, we are now facing RoundUp resistant weeds. We don’t know how to combat this because we only partially understand how weeds become resistant. The active ingredient in RoundUp inhibits a biochemical pathway that plants, bacteria, and yeast have but humans do not. Therefore, it has been challenging to study possible effects of RoundUp exposure in humans. All known acute poisonings have been from the inactive ingredients and not the glyphosate. However, chronic exposure is time-consuming and complicated to study. We are using yeast to determine if there are other biochemical targets of RoundUp in yeast that humans may have. These studies can’t be done in plants because RoundUp exposure is lethal and prevents the synthesis of nutrients but yeast can be supplemented with the nutrients that RoundUp suppresses. Other chemicals like MCHM have limited toxicological information. Several years ago, a massive chemical spill contaminated the water supply in West Virginia. It caused headaches, nausea, and rashes and nobody knew why. MCHM changes how proteins fold and doesn’t have a specific target like RoundUp. By using this chemical we are studying how changes in protein folding regulate metal and amino acid levels in the cells. Fungal infections are difficult to treat because they are immune to antibiotics. Antibiotics work because they exploit fundamental differences in the metabolism of bacteria from humans. Yeast are more closely related to humans so there are fewer druggable targets. Copper is an effective antifungal material, but it is expensive, and metal has several drawbacks. By incorporating copper into cellulose-based nanoparticles, cheap, moldable, and biodegradable materials can reduce food spoilage and infections from medical devices.

What advice would you give to aspiring scientists?

Be prepared to fail. Failure is an opportunity to learn. In the example of the RoundUp resistance, the results were the opposite of what we thought. We can’t change the results, but we did further investigation and found an even more interesting story. I think of this as lost keys. My keys are always in the last place that I look. Why? Because I stop looking when I find them. If you think you know the answer, you stop searching. There is so much to discover and so many connections of which we are not aware. By challenging how you think about something you can overcome your assumptions and chip away at the unknown.

Head to Jen’s faculty page to learn more about her and her research by clicking here.

Dr. Laurie Brown, Geophysicist and Paleomagnetist

Dr. Laurie Brown getting ready to drill a 2.5 million year old lava flow in southern Patagonia, Argentina.

How did you become interested in science?

I always enjoyed the outdoors, growing up outside a small town in upstate New York.  Camping trips with my family took me to many national parks and the wonders of the Western US.  In 8th grade I had a great Earth Science course, which I loved, but I somehow did not connect it as a career path.  I went off the Middlebury College in Vermont to enjoy the mountains and skiing, but majored in Math because it was easy for me.  By Senior year I decided to take a Geology course as an elective (because I liked mountains) and by the second week I was hooked!  It was initially the idea of working outdoors in wild and scenic places that attracted me, but I soon learned there were wonderful scientific problems aplenty.  It was 1968 (yes, I am of that generation!) and the concept of Plate Tectonics was just emerging.  Luckily, I had a wonderful professor teaching the year sequence of Physical and Historical Geology and he brought into class the latest scientific discoveries and made the course exciting and provocative.  He also encouraged me to go to Grad School with my one year of Geology, but lots of Math, Physics, and Chemistry, and the rest is history!

What do you do?

I have been a University professor for 45 years, the last 5 as Emeritus.  Being a professor at a major research university means you do many things, all at the same time!  I taught courses in Geophysics at the undergrad and grad level, as well as other courses needed by my department including Oceanography, Field Methods, Field Mapping, Physical Geology, and Tectonophysics.  I mentored students at all levels, both those in my classes and those working in my lab.  I ran a research program including Masters and PhD students where we worked together both in the field and in my paleomagnetism laboratory.  And, as is common in academia, I did a considerable amount of service for my department, my university, and my profession.

Paleomagnetic cores from Patagonia, cut and labeled, and ready to be measured!

What is your research?

I study the Earth’s magnetic field as it is recorded in earth materials- the field of paleomagnetism.  When rocks form – igneous, sedimentary or metamorphic –they are able to retain a record of the current magnetic field within magnetic minerals (magnetite and hematite primarily) in the rock.  Samples can be collected from these rocks millions of years later and the original field measured for both direction and magnitude.

Field aspects of my research involve collecting oriented samples from in situ outcrops and locations.  Currently I work mostly with hard rocks, both young volcanic flows and ancient metamorphic rocks.  I drill samples from these units using an adapted chain saw with a 1 inch diamond bit, water-cooled to preserve the diamonds.  Usually 8-10 cores are drilled at each site (lava flow or outcrop) and all are oriented in place with a sun compass.  This produces many samples; my current project in southern Patagonia involves 120 separate lava flows, and over 1000 cores!  Paleomagnetic studies also can be done on sedimentary rocks, also drilled in the field, and on lake and ocean cores, where samples are collected from the sediment once the cores are split open.

Measuring basalt cores on the cryongenic magnetometer in the Paleomagnetic Lab at the University of Massachusetts Amherst.

Laboratory measurements are performed on a cryogenic magnetometer in my Paleomagnetism Laboratory here at UMass.  It only takes a few minutes to measure the magnetization in a single sample, but a number of tests for stability and reproducibility are required before the data can be interpreted.  Samples are demagnetized in a step-wise fashion using either high temperatures (up to 700°C) or alternating magnetic fields.  We often measure other magnetic properties of the samples, including magnetic susceptibility (measured both in the field and on lab samples) and hysteresis properties.  Microscopic work or SEM studies help us to identify the carriers of the magnetization.

Current Projects.  I am working at both ends of Earth history as current projects include a major study of paleomagnetic directions from young (< 10 myrs) lava flows from southern South America.  These rocks are being used to investigate how the Earth ’s magnetic field varies in the Southern Hemisphere over the last 10 million years.  Other projects are looking at very old rocks in northern Canada where I study the variations in magnetization in a piece of ancient lower crust, now exposed at the surface, and studies of 900 million year old intrusive rocks in southern Norway that are helping us reconstruct the Earth at a time when all the continents were together in a supercontinent called Rodinia.

Magnetic susceptibility meter on a 1.8 billion year old dike intruding 2.2 billion year old metamorphic rocks, Athabasca Granulite Terrane, northern Canada.

How does your research contribute to climate change and evolution?

Paleomagnetism is able to contribute to studies of climate change, evolution, and the history of the Earth by providing additional methods to both correlate sequences and unconnected outcrops, and by providing additional information on geologic age.  The geomagnetic time scale of normal and reversed polarities is well established, and using this magnetostratigraphy enables us to date sedimentary sequences, and to identify similar sequences in other locations.  Measuring the paleomagnetism of deep-sea cores is so well established that the large drilling ships have on-board magnetic laboratories.  Although I am not doing this kind of magnetic work at present, many other labs are, providing important constraints on the timing and correlation of climatic proxies and many parts of the fossil record.

What is your advice for aspiring scientists?

Persevere!  Find that special part of geoscience that intrigues you and work hard to be the best you can at it.  Take all the various opportunities that are available to you, and see where you go!  There will be ups and downs, but as a career the Geosciences provide many positive and productive possibilities.  With over 50 years of activity in the Geosciences, I can easily say I have never lost my joy of working with and on the Earth and the many interesting problems and challenges it provides.  You, alone, may not solve all the problems facing our planet, but you will greatly contribute to our knowledge of the Earth – its evolution, its history, and its constantly changing environment.  And, along the way, you will interact with a number of other awesome scientists, get to see much of the world, and provide a rewarding and enjoyable career for yourself.

Caroline Ladlow, Sedimentologist

Caroline holding a field notebook with coring equipment in front of her in Iona Marsh, Hudson River NY.

What is your favorite aspect about being a scientist, and how did you become interested in science?

At the beginning of college one of my professor’s suggested that I take an introduction to geology course, and within a few weeks I was hooked! Before that, I had no idea that geology and earth science was a subject that people studied. But I was hooked on the idea that my classes were teaching me more about the world around me- and I still am! I love studying subjects that directly affect people and communities, so now I research historical hurricanes and different types of flooding.

What do you do?

An issue that comes up more often in the news is the frequency of intense hurricanes. These storms impact huge numbers of people along coastlines all over the earth; now we worry that these big storms might be happening more often or might be getting stronger. However, we do not have long historical records around the world of how often these storms used to happen. The really cool thing about geology is that we can look further back in time using things that nature leaves behind. I go to lakes and marshes near the coast to collect sediment- we take a big empty tube and stick it into the earth to learn about big floods that have happened in the past. It works kind of like sticking a straw into your drink and putting your thumb on top, except we do this with mud and sand. When we look at the layers in the mud, the deeper down we go is further in the past, like the pages in a book. Layers of sand tell us that a big storm happened there in the past, pushed into the lake by huge storm waves that bring sand in toward land from the ocean and beach. Counting how many of these sand layers there are helps us understand the frequency of storms through history. Knowing more about the past can help us understand how to help prepare for these storms, help protect coastal populations, and whether they are happening more frequently now.

How does your research contribute to the understanding of climate change?

Most of the global population lives within 60 miles of the coast, so studying storms and coastal flooding is really important. Boston, MA is one of many cities globally that is along the coast and vulnerable to coastal flooding, especially with the additional threat of sea level rise. Each year during hurricane and nor’easter seasons we are repeatedly reminded of the threat that these storms pose to the coastal populations of the eastern United States, not to mention other parts of the globe. The more we can constrain the frequency and strength of storms, the better we can serve and protect the people of Earth from these huge floods. I am motivated not only to be active in the research I do studying coastal flooding, but also to play a role in disseminating knowledge to public and policy spheres. The research I am involved in can help inform hurricane and nor’easter preparedness for populations all along the coasts, helping decide where structures will get built and how storm water management and adaptations plans are designed.

Showing and describing sediment cores and clay samples to our project stakeholders at an annual meeting (photo credit Jon Woodruff).

What are your data, and how do you obtain them?

Most of the data that I use comes directly from sediment, either at the bottom of lakes or on wetlands and marshes. As it builds up over time at the bottom of lakes, we can look down into the mud and read a history through the different grain sizes from sand to mud, the types of animals that lived there, and the types of materials that make up the sediment!

How do you engage with the science community and with the public?

I recently got to participate in the AGU Voice for Science program- an incredible opportunity to learn more about science communication and meet other scientists interested in outreach. The American Geophysical Union (AGU) is the largest society of earth and space scientists around the world, and they have some very cool opportunities for outreach and science communication training. So far, my outreach experience has mostly been in educational programs to get children interested in science. This program through AGU broadened my experience in science communication into policy, and we got to do congressional visits to talk to Senators and Representatives from various states about science funding. I think a really critical aspect of outreach is building relationships with the communities you want to impact and making yourself available for their questions and concerns. We often approach outreach with the attitude that we have expertise about a specific issue to offer people, but they may be interested in an entirely different subject. Asking a community what their interests and questions are before you go in with your own is a really valuable way to build trust and a strong working relationship for future research and outreach. I am excited to see how my outreach will change in the coming months after learning so much from this workshop!

What advice do you have for aspiring scientists?

Pursue your goals, even if they seem out of reach or even impossible. And never hesitate to ask others for help and advice!

 

Aly Baumgartner, Paleobotanist

AlyB

What is your favorite part about being a scientist, and how did you get interested in science in general? I’ve been interested in science for as long as I can remember. My dad was working on his Master’s of Science in Biology when I was a kid and I loved going to class with him to look at cells under the microscope and helping him collect insects in the field behind our house. I got into paleontology specifically when I learned how common it was to find mastodon fossils in fields near my house. I wanted to find one of those mastodons! I love that as a scientist I still get to do these things that I loved as a kid.

What do you do? In undergrad I said that I majored in hugging trees and minored in playing in the dirt. I would say that’s still true. I use the size and shape of leaves to figure out the ancient temperature and precipitation (paleoclimate). I do this by studying modern plants and applying what I learn to fossil plants. Specifically, I use the size and shape of tropical African leaves to study the paleoclimate and environment in Kenya during the evolution of our early ancestors.

How does your research contribute to the understanding of climate change and evolution? I like to say that I am the context. As a paleobotanist, I study the ancient temperature, precipitation, and environment.What was the world like when our early ancestors were evolving. Was it hot or cold? Was it wet or dry? Was the landscape open or forested? Was there water nearby? Understanding this can help us understand the context of human evolution.

leaves

What are your data and how do you obtain them? Because I study both modern and fossil plants, I get data from a couple of different places. For modern leaves, I primarily use existing collections from herbaria. A herbarium is like a library of plants. For hundreds of years people have been pressing leaves, collecting seeds, and drying fruits and I can use these collections to understand the range of size and shape of leaves from tropical Africa. In addition, I study both previously collected fossil leaves as well as fossils I collected myself. This means that I’ve been lucky enough to spend a few months studying collections in the National Museum of Kenya as well as doing my own fieldwork.

 What advice would you give to young aspiring scientists? It’s okay to ask questions. Very often other people have the same question but are too afraid to ask.

It’s okay to ask for help. Asking for help is not a sign of weakness; it’s a sign of strength. Knowing what you don’t understand or can’t do alone shows that you understand what it takes. It’s okay to reach out to scientists that you admire. Scientists tend to be very excited to talk about their research and are happy to hear that people are interested! Scientists are humans too.

Bethany Allen, Computational Paleobiologist and Education Outreach Fellow

Fossil hunting at Robin Hood’s Bay, North Yorkshire, UK. Photo credit: Alex Dunhill.

I am currently a PhD student at the University of Leeds, UK. My research looks at the role of mass extinctions in driving long-term trends in ecology and evolution. I do this by analysing large volumes of data from the fossil record, which requires statistical programming, an approach often termed computational paleobiology.

I’ve always enjoyed the problem-solving nature of science; it can be frustrating at times but really satisfying when all of the pieces of the puzzle fit together. As an undergrad, I studied Biology and Earth Sciences at Durham University, UK, before going on to complete a Masters in Palaeobiology at the University of Bristol, UK. Both of these courses helped to cultivate my passion for evolutionary biology, and equipped me with the scientific approaches and data analysis skills I needed to tackle “big data” questions in paleontology.

Admiring the museum collections at Galerie de Paléontologie et d’Anatomie comparée [Gallery of Paleontology and Comparative Anatomy] in Paris, France, with fellow paleontologist Vishruth Venkataraman. Photo credit: Rhys Charles
My PhD project is focused on comparing large-scale spatial patterns of biodiversity (=the variety of life in an area or on a global scale) before, during and after the Permian-Triassic mass extinction event (~250 million years ago), the most severe mass extinction event in Earth history. During this time,  up to 95% of marine species became extinct. Widespread volcanic activity drove extreme global warming, leading to ‘hothouse’ conditions which prevented ecosystems (=a community of animals and how they react with the environment around them) from fully recovering for several million years. Understanding how global warming has affected the biosphere in the past is important for making accurate predictions of how global warming will affect animals and plants in the future.

Most of my data comes from the Paleobiology Database, a global database of fossil occurrences compiled by paleontologists, which is freely accessible to everyone (you can explore the data using the Navigator app). As one of the data enterers, I spend a lot of my time looking for information on fossils published in journals and books and adding them to the database. Once I’m happy with my occurrence data, I analyse them using R, a programming language and environment designed specifically for statistics. It enables me to carry out complex calculations across big data sets relatively quickly, to establish what the fossils are telling us about large-scale evolutionary patterns.

Volunteering with the Palaeontological Association at the Yorkshire Fossil Festival in Scarborough, UK. Photo credit: Jo Hellawell.

I also really enjoy outreach. Alongside my PhD, I work part-time delivering environmentally-themed school sessions, building on the experience I gained doing outreach with the Bristol Dinosaur Project during my Masters. At present, I’m particularly involved in delivering ‘Fossil Hunt’ sessions, visiting local schools to give 7-11 year olds the opportunity to handle fossils and learn about paleontology. It’s great to be able to show the children what ‘real’ scientists look like, and I always leave refreshed by their enthusiasm.

I love my research because it strikes the perfect balance between being something I’m really interested in (evolutionary biology) and requiring something I’m good at (data science). My advice to aspiring scientists would be to find this crossover in your own skills and interests – science takes perseverance, and that’s much easier when you’re making the most of your talents and are passionate about what you’re doing!

Follow along with Bethany, her research, and her education outreach activities on Meet the Scientist, Published,

Dr. Rehemat Bhatia, Foraminifera Geochemist

Rehemat looking at foraminifera under the microscope

What is your favorite part about being a scientist, and how did you become interested in science?

Throughout my time in middle school, my favourite lessons at school were always biology, chemistry and physics. I also really enjoyed physical geography, and  my teachers at school were always enthusiastic, engaging and were more than happy to support my interest in geology. They pointed me in the right direction with careers when I was in high school, and without their guidance I probably wouldn’t have studied geology at university. I also volunteered at the Natural History Museum in London from the beginning of my third year of undergrad with an EU funded research project called Throughflow (as part of the V Factor Volunteer Scheme). The researchers who I volunteered with were also incredibly encouraging and supportive, and great mentors too.

I enjoy being a scientist because:

  • I get to look at microfossil specimens that no one has looked at before. Foraminifera are so pretty, and I still can’t believe that these single celled organisms manage to create these ornate skeletons which record climate during their lifetime! Understanding the stories they have locked up inside is sometimes a little difficult, but I enjoy the challenge that this presents.
  • Lab work is fun. I love learning different chemical techniques.
  • I get to meet lots of awesome people from a variety of backgrounds and geological disciplines and talk science with them.
  • I get to communicate my science to public audiences and inspire new generations of scientists.

What do you do?

I use the chemistry of fossil plankton called foraminifera to understand more about their ecologies and what the climate was like millions of years ago.

How does your research contribute to the understanding of climate change, evolution, or to the betterment of society in general?

We use chemical data from foraminifera shells to reconstruct past climate. However, we don’t fully understand all aspects of foraminiferal ecology i.e. exactly what their lifestyles were like- did they all live with algae? Did they migrate or change in size because oceans became harder for them to live in? Ecology affects shell chemistry. Thus, before we put together long term climate records to understand how the earth’s climate has changed through time using chemical signals from foram skeletons, it is important to understand the controls on the signals that we use. This is particularly pertinent to geological periods that we use as future climate analogues such as the Eocene (~47-33 million years ago).

A picture of a foraminifera (taken with a microscope) that has been blasted with Rehemat’s laser! Where the holes are is where the laser was used to measure the different amounts of elements in the shell.

What are your data and how do you obtain them?

Planktonic foraminifera are single celled plankton which have a skeleton made from calcium carbonate. Some species choose to live in the surface waters of the ocean, whilst others choose to live in the thermocline. Some even live together with algae! All forams are beautiful, and they come in all sorts of shapes and sizes. Foraminifera are really awesome too, because in the same way human hair records our diet, their skeletons record the environmental conditions around them in the ocean. By the analysis of one shell, we can understand the climate in the location and the time that the foram lived, including how hot the oceans were and even how much ice there was on land!

When foraminifera die, their skeletons sink to the sea floor and build up in layers, creating an extensive fossil record more importantly an extensive climate record too! The same signals we use to infer climate in the past can tell us how they used to live too i.e. their ecology.

To understand foraminiferal ecology, I use several geochemical proxies. Proxies are chemical signatures which are an indirect way of understanding an environmental parameter. I primarily use  oxygen isotopes, carbon isotopes and the amounts of magnesium (Mg), strontium (Sr) and boron (B) (ratioed to calcium, Ca) in foraminiferal shells. If these elements are unfamiliar to you, you might not have realized you’ve seen them before. White fireworks have Mg, green fireworks have B and red fireworks have Sr! I gather these data using different machines called mass spectrometers and electron microprobes. One of the mass spectrometers I use is hooked up to a laser, which is super cool. I use the laser to drill through foram shells to understand how Mg, B and Sr vary through the shell wall. Mg/Ca, Sr/Ca, B/Ca, δ18O and δ13C signatures are specific to certain species. For example, a surface dwelling species will have greater Mg/Ca and a more negative δ18O signature. Therefore if I collected these type of data from a species with an unknown ecology, I would infer that it was a surface dweller.

What advice do you have for aspiring scientists?

  • Always be curious.
  • Ask as many questions as you can – no question is stupid. If someone tells you your question is stupid – they’re wrong.
  • Talk with lots of people who might be able to help you gain more of an insight into the world of science. You never know who might be able to give you work experience/research internships/jobs (both academic and non academic).
  • If things go wrong academically early in your career, don’t let that stop you from progressing later on. Work hard, learn from your mistakes, and you can do anything you’d like to (I speak from experience with this one…)
  • Have mentors and a support network. I wouldn’t have survived the final stages of my PhD without mine.
  • Look after yourself – no science is worth you burning out over. As a friend once told me – the forams will still be there and waiting for you to look at them in the morning… (they’re not wrong).
  • For those studying for exams (including PhDs): Don’t lose your enthusiasm and don’t give up if things get tough. You set out to learn/research something cool, and if you’ve made it this far, you can totally do it!

Learn more about Rehemat’s research and follow her on Twitter @rehemat_

Dipa Desai, Paleoclimatologist & Educator

Dipa working in Colorado with the National Park Service.

What do you do?

I am a paleoclimatologist, and I study the ecological and environmental effects of climate change using the fossil record. Specifically, I research how the Ross Ice Shelf in West Antarctica responded to temperature and atmospheric CO2 concentrations slightly higher than what Earth will experience in the next several decades. The Ross Ice Shelf is currently the largest mass of floating ice in the world, and West Antarctica is currently melting faster than the rest of the Antarctic Ice Sheet–what’s going to happen when this much ice melts into the ocean? How will melting affect regional plankton communities, the base of marine food webs? When that much freshwater is added to the ocean, what happens to ocean currents and circulation? I’m interested in answering these questions and using research outcomes to improve environmental policies and climate change mitigation strategies.

I’m also an educator! I spent the last two years in the classroom teaching 5th and 6th grade STEM (Science, Technology, Engineering, Mathematics) classes, and I informally teach when I participate in STEM outreach events and programs. I plan to use my research as a model to teach the next generation of voters and environmental stewards about their planet’s historical and future climate change, and inspire the next generations of diverse, innovative STEM professionals. As an educator, I have seen how disparities in access to educational opportunities disproportionately affect low-income communities, communities of color, immigrants and non-native English speakers, and other traditionally oppressed and disadvantaged groups. As a member of these communities, I see a lack of representation and inclusion in STEM professions, and a gap in scientific literacy in our policymakers, so I want to use STEM education to affect greater social and political change.

What do you love about being a scientist?

I love learning about the Earth’s past–being the first person ever to see a fossil since its deposition, using clues in the fossil record to understand and imagine what the Earth looked like millions of years ago, and making connections to predict what our world will look like in the future. However, my favorite part of the job is telling other people about what I do! I can see folks light up when I mention I study fossils, and it’s cool to see how many people grew up wanting to become a paleontologist, just like me! I think most people believe paleontology doesn’t have any real-world applications but in reality, paleontology offers a unique perspective to understanding the modern environment. When I tell students, I see them get excited about science and all its possibilities: I remember when I judged the MA State Middle School Science Fair once year, a participant was amazed that you can use fossils to study climate change, and she asked what else can we study using fossils? It is exciting to share my career with youths, especially those who look like me, because their idea of what a paleontologist looks like and does changes when they meet me.

Describe your path to becoming a scientist. 

As a kid I loved dinosaurs and exploring outside, so I knew I wanted to be a paleontologist from an early age, but I wasn’t sure if I’d ever get here. Growing up as a child of undocumented immigrants, our family faced housing, food, and financial insecurities, so college seemed beyond our means. However, I received the Carolina Covenant Scholarship to become the first person in my family to attend college, and I studied Biology at the University of North Carolina at Chapel Hill (Fun Fact: Time Scavengers Collaborator Sarah Sheffield was my teaching assistant for Prehistoric Life class!). I completed a B.S. in Biology, and minors in Geological Science, Archaeology, and Chemistry.

While I was an undergraduate at a large research institution, I didn’t have a dedicated mentor or the cultural capital to know I should pursue undergraduate research as a stepping-stone to getting into graduate school. After graduation, I pursued research opportunities with the National Park Service in Colorado and the Smithsonian Tropical Research Institute in Panama, where I got the chance to conduct independent research projects, help excavate and catalog fossils, and teach local people about their community’s paleontological history. While in Panama, I became fluent in Spanish and wondered how I could use my new experiences and skills to communicate complex STEM concepts to broader audiences. I transitioned to teaching middle school for the next two years; I taught hands-on STEM classes to 5th and 6th graders in the largely immigrant community of Chelsea, Massachusetts. I enjoyed giving my students educational opportunities that will help them in the future, and the challenges my family faced in my childhood prepared me as an educator to understand how my students’ personal lives affected their learning in my classroom.

The experiences I pursued after my undergraduate career gave me the skills and clarity needed to develop and pursue a graduate research degree. I’m currently working on my Master’s/Doctoral joint degree in Geosciences at the University of Massachusetts at Amherst.

How do you communicate science? How does your science contribute to understanding climate change?

For my graduate research, I’m studying how warmer-than-present paleoclimates affected Antarctic ice cover and the paleoecology of the surrounding ocean. Specifically, I study the Miocene Climatic Optimum, when global temperatures and atmospheric carbon dioxide concentrations were slightly higher than they are today, and close to what we expect to see at the end of the century. Studying the deep sea records of this time period reveals how microfaunal communities (i.e. foraminifera) reacted to a rapidly warming global climate, and how changes in Antarctic ice cover impacted sea level and ocean circulation; this can be applied to improve climate models and future environmental policies.

I want to bring my research to public audiences through in-person, multilingual outreach at museums, schools, and other educational institutions, and through online media to make climate science accessible and improve scientific literacy. Using multimedia, interactive, and open-access platforms to communicate science not only reaches more people, but also fits the needs of many different learning populations; this is why I believe STEM disciplines need to move away from the traditional format of communicating findings in paid science journals and articles.

What is your advice for aspiring scientists?

Mistakes are the first steps to being awesome at something.

Try as many new experiences as possible.

Identify what skills you need to do the job you want, then identify opportunities that will give you those skills.

Find a career that you enjoy, you are good at, that helps others, and hopefully makes you some money along the way.

Sadie Mills, Environmental Educator and Museum Project Coordinator

Using Ollie, a non-releasable Eastern Screech Owl, to teach students about bird adaptations at the Rock Eagle 4-H center near Eatonton, Georgia.

My curiosity about the natural world started on family camping trips. One regular destination was the shores of the Sea or Cortez, where the extreme tidal range (up to 9m!) produced incredible tide pools full of stingrays, octopi, brittle stars, and more. My fascination with nature and true love of being outside eventually led me to pursue job opportunities (and later a master’s degree) in environmental education. Environmental education aims to help people understand, appreciate, and think critically about their interactions with all aspects of the natural world. This can be accomplished through outdoor experiences, laboratory activities, live animal encounters, and more. My work days have included leading students on forest hikes, taking families seining at the beach, and educating public visitors at rehabilitated sea turtle releases. While many of these experiences are short-lived, they often spark enduring curiosity, positive feelings about nature, and sometimes positive behavior change among participants. Not every interaction makes a difference, but when they do the results can be quite powerful.

Tide-pooling at Puerto Peñasco (Sonora, Mexico), one of the places that got me hooked on nature. (Tragically, the 101 Dalmatians sweater is too blurry to properly appreciate.)

To remain effective, environmental education must adapt to our changing world, and in the 21st century this means branching out into virtual education. In my current position as coordinator for the FOSSIL Project, I get the opportunity to engage with audiences through online interactions on social media and our website (www.myfossil.org). FOSSIL (Fostering Opportunities for Synergistic STEM with Informal Learners) is an NSF-funded initiative that supports a community of amateur (avocational) and professional paleontologists with the goal of shared learning. Utilizing online platforms has allowed us to build a diverse and widespread community of learners, but also a community of educators. Each of our participants brings knowledge to the table, and the online space makes it easy and comfortable for them to share their experiences. This fall, we hope to further expand our community with the introduction of an accompanying mobile app. This tool will allow users to document and share their paleontological experiences directly from the field. I never thought I would contribute to an app, but I am now so excited to see the learning opportunities that will result from this new technology.

Teaching students to seine for surf-zone fishes and invertebrates on Tybee Island, Georgia.

One of the great joys of working as an environmental educator is seeing how excited people get when they learn something new, especially people who may be discovering their passion for science for the first time. For those thinking about a future in science, I hope you will consider the many career paths available to you. If you like technology or inventing, you can help develop the tools scientists use to make new discoveries. If your passion is writing, you can pursue science journalism or help edit science publications. You can conduct investigations as a researcher, teach others as a formal or informal science educator, pursue art as a science illustrator, or help shape policy as an environmental lawyer. In its own way, each job makes an important contribution to science, and society needs curious science enthusiasts in many different roles!

Dr. Page Quinton, Paleoclimatologist

Dr. Page Quinton (left) and student Samantha McComb (right), completing field work on the Madison Group Carbonates in Montana.

What do you love about being a scientist?

My favorite part of being a scientist is the systematic approach we employ to answer questions. Yeah, we can use a variety of techniques to get at our answers, but the process of collecting and interpreting the data must follow the same basic rules! I’d also add, that I am particularly fond of being a geoscientist because of the combination of lab and field work (the best of both worlds)!

What do you do?

I could be classified as a Paleontologist, Geochemist, and/or Paleoclimatologist. Which I choose to call myself depends on who I am talking to (obviously, I go for Paleontologist when talking to young kids for the instant cool-points)! The reason for the multitude of possible names is that I apply a variety of techniques to answer questions about the climate. In particular, my research focuses on the timing and nature of climatic changes in Earth’s history and their relationship to how carbon is stored and distributed on the Earth (e.g. in the atmosphere as CO2 or stored in rocks as fossil fuels).

What are your data, and how do you obtain them?

I use fossils and their geochemical signals to understand the climate in the geologic past. The fossils I work with most are conodont elements (small tooth-like structures that make up the feeding apparatus of a marine eel-like organism). These fossils are composed of the mineral apatite which acts as a good record for the geochemistry of the water in which the conodont animal lived. From these tooth-like structures, I measure the oxygen isotopic ratios (the relative abundance of 18O relative to 16O). The oxygen isotopic ratio is dependent (in part) on the temperature of the water. By documenting changes in the oxygen isotopic ratio through time, I can infer changes in water temperature through time.

I also work with carbon isotopic ratios (the relative abundance of 13C to 12C) in marine limestones. These values can be used to reconstruct the distribution of carbon on the Earth’s surface. By looking at changes in the carbon isotopic value through time, I can infer changes in the global carbon cycle and therefore atmospheric carbon dioxide (CO2) levels.

Late Ordovician (~450 million years ago) conodont elements from northern Kentucky.

How does your research contribute to the understanding of climate change or to the betterment of society in general?

In addition to my scientific research I also teach undergraduate students at SUNY Potsdam. I always make sure my research informs how and what I teach. This is especially true for the Climate Change course I teach. That course focuses on how scientists know what they know and what types of evidence informs our understanding about climate. My hope for students completing that course is that they will come out of it with the knowledge and background to understand climate change.

What advice do you have for aspiring scientists?

Make sure you do what you love. Your job should be fun. That doesn’t mean every aspect of it will be a blast, many of the things I do can be tedious, but there is something very satisfying about setting out to solve a problem, collecting the data, and interpreting the data. For students interested in pursuing graduate education, the most important advice I can give is to make sure you can work with your advisor. I had a great advisor and it made graduate school a great experience.

Learn more about Page and her research on her website!