Gabriel-Philip Santos, Collections Manager and Outreach Coordinator

What do you do?

What do I do? That’s a fun question. Most people think of paleontologists as scientists who only study dinosaurs, but really there many different ways to be a paleontologist and not all of them have research as their main thing. At the Alf Museum, I wear many hats, so really what I do depends on the day, which is really fun honestly! My main duty is as the collections manager of the Alf Museum. I like to call myself the “Keeper of Bones” because its my job to take care of the 180,000+ fossils in our museum. Sometimes that involves organizing them, repairing broken fossils, sending fossils out to other scientists, or using fossils to create a brand new exhibit.

As the outreach coordinator, my job is to create fun and engaging programs that help our guests learn about natural history. One of my favorite ways to do this is to connect culture with science. For example, for our Making Monsters Discovery Day, I dress up as Professor Oak from the Pokemon franchise to talk about the real-life fossils that inspired fossil Pokemon! This is how Cosplay for Science got started actually! Cosplay for Science is a fun imitative I created with my friends Brittney Stoneburg, Michelle Barboza-Ramirez, and Isaac Magallanes to use cosplay to explain the science behind our favorite fandoms!

Outside of my main duties at the museum, I also like to conduct my own research. I mainly focus on the evolution of marine mammals, particularly the weird, hippo-like desmostylians (imagine something that looks like a hippo, lives on the beach, but is the size of an elephant).

What is your data and how do you obtain it?

A figure from a publication, showing the growth stages of teeth as species of Desmostylus aged.

When I conduct my own research, my data is obtained through looking at the shapes and differences in the bones of desmostylians and other marine mammals. For my first publication, my co-authors and I looked specifically at the teeth of desmostylians. We looked at how the teeth type and shape changed as the animals got older and also at how they wore their teeth through use. From this, we were able to create a way for future paleontologists to tell the general age of a desmostylian based on what teeth they have and how worn they are.

My job as a paleontologist is not much of a data gatherer. I am really more of a data preserver and presenter as a collections manager and outreach coordinator. In the collections, we preserve as much data as we can by protecting fossils from breaking down and by digitizing fossils. We don’t turn fossils into data like Tron, but what we do is we photograph specimens. We create 3D models. We save data like where a specimen was found or who found a fossil in a special computer database. As a science communicator, my job is to take other scientist’s data and make it easier for the general public to understand.

How does your research contribute to climate change, our understanding of evolution, or to the betterment of society in general?

As a collections manager, I get to be part of something bigger. While I may not contribute directly to major discoveries, my job ensures that all the fossils in our collection are preserved for future paleontologists. Within the collection that I take care of, there may be many important discoveries waiting to be described. As an educator, I also get to help inspire a new generation of scientists and help to create a future that is guided by science. We are facing a very grim future because of people out there who disregard science. If I can help to make everyone in our community see the value in science, even if they don’t want to become scientists, that, I think, can help to build a better future where critical thinking is not only valued, but the norm.

What is your favorite part about being a scientist?

So many things! My favorite part of being a scientist is that I have the opportunity to learn something new everyday and then go out and help someone else learn something new! Ever since I was kid, I have loved stories and when you’re a scientist, there a limitless stories out there to discover and retell. Its just amazing and really makes me excited to come into work everyday!

What advice would you give to young scientists?

What I like to tell young scientists or scientists new to their field is to make sure that you love what you do. I’m not saying that you have to go to work or school everyday laughing and smiling, but that overall, you enjoy your work, research, or job. If you aren’t happy with what you are doing, there is nothing wrong with changing your career path. I would also like to tell scientists to be sure to take care of yourself. You should always put yourself first in anything you do. Don’t push yourself to the brink of exhaustion because you think you need to in order to succeed in science. There’s no need for that. I guess to sum it all, you do you and be sure to treat yo’ self every now and then.

To follow Gabe check out his Twitter and Instagram. To learn more about the Raymond M. Alf Museum of Paleontology click here! To learn more about Cosplay for Science check out their website, Twitter, and Instagram!

Something seems fishy here…warm blooded fish?

Whole-body endothermy in a mesopelagic fish, the opah, Lampris guttatus

Wegner, N.C., Snodgrass, O.E., Dewar, H., Hyde, J.R

Lampris guttatus, a fish who is able to produce its own body heat! (Source: fishbase.org). This fish is found worldwide, though it’s especially common in Hawaii and west Africa.

What data were used?
Captured and freely-swimming opah fish

Methods
Researchers measured the body temperatures of captured and freely swimming fish at their natural depth. Temperatures were taken in multiple places along the fish, including the temperatures of a number of the muscles. These measurements were taken by heat monitoring sensors placed in the muscles of the fish.

Results
Researchers found that the core of the fish (pectoral muscles, heart, etc.) were much warmer than the surrounding environment. The cold, oxygenated blood of the fish is warmed by the conducting of heat from the warmer, deoxygenated blood leaving the respiratory system before the oxygenated blood reaches the respiratory system. This indicates that these fish, just like humans and all other mammals, are able to produce their own body heat (“warm blooded”) as opposed to creatures like reptiles, who rely on external sources, like the sun, to maintain their temperature (“cold blooded”).

Why is this study important?

The temperature of an opah fish as taken by the scientists of this study. Measurements were taken ~4-5 cm below the skin of the fish for 98 cm, the length of the fish’s body.

We’ve all learned from school that critters like reptiles and fish are cold blooded, whereas mammals (like us) are warm blooded. Simple, right? It turns out, it’s not nearly as simple as that! More and more, scientists have begun to discover that there are many animals that don’t fit into these neat categories, the opah fish being the most recent of these. This is important because in the fossil record, we don’t have the luxury of examining animals while they’re still alive, so we need to look for other clues! Dinosaurs and pterosaurs are excellent examples of this-we’ve always thought reptiles were cold blooded. But dinosaurs, like Velociraptor, had feathers! They had larger brains! Pterodactyls could fly by flapping their wings! All of these are examples of warm-blooded behavior. Fish like the opah show us how what we thought we knew might not always be the case!

The big picture
The picture that I want to stress here is that even the big things we thought we understood in science-like who’s warm and cold blooded-are subject to change with new data! Only within the last few decades have scientists begun to ditch the idea that animals fall neatly into categories of “warm” and “cold” blooded. It’s also important to note that discoveries such as these open our interpretations of extinct organisms-like dinosaurs, pterosaurs, and yes, even fish!- and how they were able to generate energy. Since we can’t bring a live pterodactyl (at least, not yet! Maybe we’ll learn more after watching Jurassic World: Forgotten Kingdom) in for testing, data such as these remind us that life isn’t as simple as just ‘warm’ and ‘cold’ blooded.

Citation
Wegner, N.C., Snodgrass, O.E., Dewar, H., Hyde, J.R., 2015, Whole-body endothermy in a mesopelagic fish, the opah, Lampris guttatus: Science, v. 348, p. 786-789, DOI: 10.1126/science.aaa8902

Implicit bias in STEM

Jen here –

This post was originally written as a response to an email that was sent out in my department. That email was worded in a way that suggested that women are not underrepresented in STEM fields. I’ve reworded and rewritten my original email here. Included in this article are numerous links to studies to support the claim that women and other diverse groups of researchers are discriminated against.

Language is powerful and in order to have productive dialogue regarding representation of diverse groups in STEM fields, it is best not to start with suggesting that any underrepresented group is not underrepresented. This is simply counterproductive. The barriers to women in science are worldwide and supported by quantitative data.

An article cited as supporting the ‘myth’ of underrepresentation in STEM (here) was directed at the publication results of women, but only samples American Geophysical Union (AGU) journals. Even if women have a higher acceptance rate by the 19 AGU journals, this is not a representative sample of ‘high-impact’ journals, as it is only sampling from a small subset of journals. Furthermore, it is mentioned we (scientists) should use caution when quoting specific studies, but the article is a news story- not peer-reviewed literature. We must take into account why fewer women are submitting to these high impact journals, such as Nature and Science. This is a systemic problem that is rampant in academia. Institutional policies and subtle biases within an individual’s academic career perpetuate gender inequality.

More specifically, data has been mined from the Paleontological Society and the North American Paleontological Convention to explore gender gap trends in paleontology. The gender breakdown data of members of these societies depicts a near even 50-50 split among graduate students, but a reduction to 25% women and 75% men at the professional membership level. This indicates that at somewhere between grad school and academic careers stages, women are being lost from the geosciences. There are easy steps to support these women graduate students as they transition to early-career stages in all areas of the sciences, such as: providing childcare at meetings, fostering mentoring opportunities, confronting internal biases, and conscious efforts to invite women as speakers. Women are less likely to be asked as invited speakers in a variety of venues, for example: TED talks and conferences. Additionally, work has been conducted to explore the likelihood of choosing women speakers at mathematics conferences compared to the observed outcomes. The author provided evidence that underrepresentation of women as invited speakers in mathematics should, in fact, be an overrepresentation given individuals in the field (easily digestible article on the content here).

The gender gap permeates through the peer review process, in terms of women suggested as reviewers and editors inviting female reviewers. The aforementioned link provides a comprehensive summary of many peer reviewed publications on the subject. Furthermore, the STEM community must take into account implicit gender bias (which refers to the attitudes and/or stereotypes that affect our understanding, actions, and decisions in an unconscious manner), a main contributor to the gender gap. Work has been conducted on the gender differences in recommendation letters, indicating that female applicants (to jobs, graduate schools, etc.) are half as likely to receive excellent letters versus good letters compared to their male counterparts. Here is an article with six tactics to counteract unconscious biases. This permeates into funding opportunities and invited papers as well and has a direct effect on career success of women. Women commissioned to write Nature News & Views is much lower than the women scientists in their respective fields. One study determined that male applicants were funded over female applicants on the basis of ‘quality of researcher’, rather than ‘quality of proposal’. As academics we are evaluated based on our publication rate, but if women are commissioned less to write for high-impact journals, refused funding more frequently, and given less excellent letters of recommendation, then publication rate is an inequitable measure. This has been recognized in the medical literature as well. A recent study suggests that this bias is much less substantial when grant reviewers focus solely on the quality of the grant, instead of the presumed quality of the author of the grant. Gender bias goes away when grant reviewers focus on the science.

Further complicating the idea that women ‘publish less than men’, women in academia-namely, those in a university setting, are much more likely to be asked of favors from students. Meaning, women are much more likely to spend extended time with students who ask for ‘special favors’ (e.g., second chances on assignments, etc.), Female Professors Experience More Work Demands and Special Favor Requests. Women statistically also do more internal service than men, says a study that surveyed approximately 19,000 faculty members across the country. Faculty Service Loads and Gender: Are Women Taking Care of the Academic Family? This increased service load leads to lower productivity in other areas such as research and teaching, which can directly affect salary and success in academia.

All of these issues are even further compounded when you consider that women of color, women with disabilities, and the LGBTQ+ community are under considerably more discrimination than white, heterosexual, cisgender, nondisabled women (accessibility in the geosciences). There are a multitude of studies indicating that academics that are part of more than one underrepresented group are further discriminated against (e.g. Racial Microaggressions Against Black Counseling and Counseling Psychology Faculty; Race, Ethnicity, and NIH Research Awards). While there are numerous variables involved in understanding these biases, we do know that these biases affect people very early in life, as there are many studies that identify problems like students of color are less likely to be identified as gifted by their teachers, thus taking away opportunities at a formative time (read more here).

To create a more inclusive and diverse scientific community we must recognize our implicit bias and work to support and encourage diversity. The onus should not  rest on women and other underrepresented groups to  fix the systemic discrimination in academia, as well as provide evidence that it exists every time issues arise concerning it. 

Related article (here) by Dr. Phoebe Cohen that has similar goals and is easy to read and well organized.

Planetary Geologic Mapper’s Meeting

Rose here –

The meeting room with several posters of maps that were presented.

One of my favorite events every year is called the Planetary Geologic Mappers Meeting. This is a meeting held annually at which all scientists with a NASA grant to do geologic mapping come and present updates on their maps. It’s really cool because there are maps not just of well-known or major planetary bodies (Mars, Mercury, Venus, the Moon) but also of smaller or less well-known bodies, including asteroids, dwarf planets, and several moons of planets in the solar system. Earth is of course a planet too, but to distinguish science done on and about earth from that done about any other place in the solar system or universe, everything not on Earth is called “planetary” and Earth-specific research is termed “terrestrial”. The main point of this meeting is to update NASA, although it has also become a place to get feedback and support from the USGS Astrogeology mapping support team and fellow mapping scientists, but it’s also a great opportunity for students to network and learn more about planetary geologic mapping.

This meeting is very small, generally less than 50 attendees, unlike the big geology conferences like GSA (Geological Society of America) and AGU (American Geophysical Union). This means that even though this was only my third time attending, I was familiar with many of the people there and what they were doing. There were a number of new faces this time, which is very exciting. It’s always fun when people start doing planetary mapping for the first time, and the community is very welcoming of new-comers and willing to help.

Several members of Dr. Burr’s research group discussing a map of fluvial features on Titan (a moon of Saturn).

This year it was held in our department at the University of Tennessee, Knoxville. My advisor, Dr. Devon Burr, was the local organizer this year, so I got a chance to see everything that goes into hosting a conference like this. It was great fun to welcome all the mappers to Knoxville. I’ve made a few friends at this meeting over the years and I loved the chance to show them around my city.

The first two days are poster and oral presentations. One person from each mapping team gives an oral presentation on their project, with some time for questions they have for other mappers or thoughts and questions from the mappers and USGS mapping staff. Most mapping teams also have posters of their maps. There is lots of time built into the schedule for poster presentations and networking. There are teams of mappers from different universities or institutions who use this time to meet and discuss their work in person rather than phone or e-mail as they usually have to do during the school year. It’s also a good time for student mappers to ask more experienced mappers or those with expertise in a particular field for advice and feedback on their projects.

This photo shows members of the Earth and Planetary Sciences department who participated in the Planetary Mapper’s Meeting this year. On the far right is Dr. Devon Burr, who led the local organizing committee for the meeting.

The first night we had a social and all went out for dinner at a local restaurant. It was a great break from all the science we’d been discussing. We got a chance to catch up and talk about where we’re all living and working, show off pictures of our pets and families, etc. It’s good as scientists to take time to appreciate each other as humans too with lives outside of our jobs each day. While this meeting is short and sweet, it’s always great fun and I look forward to the next one!

Ruthie Halberstadt, Glaciologist

 

Ruthie doing field work in the Dry Valleys, Antarctica, helping to collect a permafrost core that records ice sheet dynamics during the mid-Miocene (a very warm time period ~14 million years ago, the last time that atmospheric CO2 levels were similar to today).

What do you do, and how does your research contribute to the understanding of climate change?

I study ice sheet dynamics in Antarctica, which means that I am interested in the processes that influence how ice mass gets moved off the continent and into the ocean, in either solid (iceberg) or liquid form. The term ‘ice-sheet dynamics’ may be confusing if you think of Antarctica as a giant frozen ice cube. Instead, think of the Antarctic ice sheet as a giant cone of sand – when you pour dry sand on the top of a sand pile with steep edges, rivulets of sand start to form. These ‘streams’ move sand from the top of the pile out to the edges. In Antarctica, the same process (gravity) creates fast-moving corridors of ice – we even call them ‘ice streams’.

OK, so what about the ‘dynamics’ part? Now imagine that your pesky little sister takes a shovel, and removes a chunk of sand at the edge of the pile. Sand will flow into the newly-created hole, right? The same thing happens when warm ocean temperatures melt ice at the edges of the Antarctic continent: ice streams speed up and move more ice off the continent and into the ocean. Warm air temperatures can also increase surface meltwater production which can drain into crevasses and promote iceberg calving, also causing ice streams to drain more ice into the ocean.

These processes add to the total volume of water in the ocean. Therefore, what happens to the Antarctic ice sheet in the future will determine the rate and amount of global sea level rise.

What are your data, and how do you obtain them?

I use computer models that simplify the interactions between ice sheet and the climate, in order to reconstruct ice-sheet dynamics. We need to be confident that these models can adequately represent past time periods, though, before we can trust the computer model predictions of future Antarctic mass loss and sea level rise. Therefore, we validate these computer models by comparing them to geologic records of ice sheet behavior. My previous research project interpreted ice sheet dynamics and retreat patterns by mapping features that fast-moving ice-streams carved into the ground throughout the last glacial cycle. This information is used to calibrate the ice sheet model, ensuring that the model is physically realistic and reconstructs the same ice sheet retreat pattern as I interpret from the geologic record.

The  animation below shows a computer model projection for future sea level rise up to the year 2500. Here, the model assumes business-as-usual carbon emissions until the year 2100 (following ‘Representative Carbon Pathway’ RCP8.5). Even though the model’s carbon emissions are held constant after the year 2100, it takes the Antarctic ice sheet decades to centuries to fully respond to the high-CO2 forcing, leading to a huge amount of sea level rise. You can see the ice sheet (blue) get thinner and retreat, exposing the land (brown) of the continent underneath. I made this animation as part of a project to predict future sea level for the city of Boston; you can learn more about this project here, and see the full video I made here.  This is an example of how ice sheet computer models are used to predict future impacts of our modern decisions about carbon emissions.

 

What is your favorite part about being a scientist?

One of my favorite parts about being a scientist is the international community. When I go to conferences, or participate in field work, I am always in the company of international colleagues who become friends. I learn so much about science, but also about culture and history I would not be exposed to otherwise. Another favorite part of being a scientist is the opportunity to travel to amazing places, like Antarctica!

What advice would you give to young aspiring scientists?

My biggest piece of advice to young scientists (and to everyone) is: ASK STUPID QUESTIONS. Yes, there is such a thing as a stupid question, but no, it doesn’t mean that you are stupid. It means that you care more about understanding a concept and broadening your mind than what the people around you think. It’s hard – I still struggle with this, especially in a public setting like a class or lecture – but it’s so important. Asking stupid questions is by far the #1 easiest way to learn anything new, and often leads to the best conversations you’ll ever have. If you have a stupid question but feel embarrassed, just remember that there is a 99% chance that someone around you is wondering the same thing but is too shy to ask.

Japan Temple and Metamorphic Rocks

Jen here –

Rinsing our hands in the river before nearing the shrine. Notice the dark coloration of the stairs. These are some of the greenschist rocks at the complex.
I experienced a more non-traditional field experience that I would like to share with everyone. I recently traveled to Japan for the 16th International Echinoderm Conference and during this conference there was a mid-week field trip to the Ise Grand Shrine. Before we left we were given a brief history on the shrine and what it symbolizes. Basically, it is meant to symbolize eternity. This shrine is rebuilt every 20 years from the ground up rather than patching issues as they arise. This ensures that the shrine ages as a whole! It is also built adjacent to the current standing shrine so every 20 years the shrine moves locations.

The primary shrine at the temple complex.
The shrine is built of very specific building materials and no nails are used during the construction. The rebuilding of the shrine ensures that the next generation learns the skills required to construct the temple to continue to pass along this tradition. It’s a really interesting concept and I really enjoyed getting to wander around the complex. There were also very interesting rocks as you walked up to the shrine!

The steps were mostly made of metamorphic rocks that are likely greenschist. This type of metamorphic rock is created from igneous rocks that undergo transformation under particular temperatures and pressures. The heat and pressure often comes from different land masses colliding with one another throughout time, caused by plate tectonic movements. Greenschist rocks are normally dominated by minerals that exhibit a green color such as chlorite, actinolite, and epidote. Japan has an incredibly complex tectonic history and I won’t attempt to explain it but if you are interested in learning more check out this report and the Geology of Japan by the Geological Survey of Japan.

Close up of some of the stairs containing the greenschist rocks.

Whenever you are traveling or even in your hometown, make sure to look out for what buildings, stairs, and more are made of! You’ll be surprised at the extraordinary details you will uncover in the rocks that surround you in your daily life.

8th Grader Fossil Fun!

Adriane here-

Here at University of Massachusetts Amherst, I do a lot of science outreach with kids of all ages! Early in the summer, I had the opportunity to show 45 8th grade students fossils from all major times in Earth’s history and teach them how we can use fossils to determine how the Earth has changed through time. My advisor, Mark, was also there to help teach the kids!

The front table had all Paleozoic (~550-250 million years ago) fossil; the middle table contained Mesozoic (220-66 million years ago) fossils; and the back table contained Cenozoic (66-0 million years ago) fossils.

The first thing Mark and I did was to gather fossils from the three major eras in Earth’s history: the Paleozoic (time), Mesozoic (~250-66 million years ago), and Cenozoic (66-0 million years ago). We created three major tables in a classroom, one table for each era. I then labeled each fossil by the time period in which it belonged (and each era was associated with a different color paper) and what the fossil was. There are three white boards in the classroom, so we assigned each group a white board to write down their observations on. When the kids arrived, we broke them into 3 groups each, and let each group observe the fossils at each table for about 3-5 minutes. Then the groups switched tables so that all groups saw each table of fossils.

We asked the group to make observations about their fossils from each era. Questions we had them consider were things such as: Where did they begin to see animals with teeth? In what era were animals mostly invertebrates? What kinds of animals did you see in each era (dinosaurs, mammals, etc.). The students wrote these observations on their white boards. Of course, some of our questions and their answers were biased by the specimens we had available (for example, we have TONS of Paleozoic brachiopods and trilobites, but no fish or other vertebrates with teeth).

Students writing their observations about the fossils from the three major eras on their white boards.

After all the groups had seen all the fossils, we then asked them to assemble by their boards and think about the differences among the major eras. They came up with some great answers, such as that the land animals with big teeth (such as mammoths, horses, and bison) dominated the Cenozoic, and the majority of shelled animals were dominant during the Paleozoic. And of course, they were totally tuned into the fact that the Mesozoic was the age of dinosaurs.

At the end of this exercise, we then gave the students and their teachers a chance to ask us any remaining questions they had about geology or fossils. Both the students and teachers asked really great questions! One of the teachers asked if all mass extinctions were caused by major climate change events (they were, except for the end-Cretaceous mass extinction, which was caused by a major impact). My favorite question of the day was from a girl who asked why all geologists wore earth-toned clothes! It turned out that both my advisor and I were wearing forest green shirts, so we found this quite amusing 😊

All in all, it was an excellent day spent with the students! They really enjoyed being able to pick up and hold the fossils, and learn about how paleontologists use them to interpret changes in Erath’s climate through time.

Drew Steen, Geomicrobiologist and Ocean Scientist

What is your favorite part about being a scientist?
My job is to do interesting things. If I’m working on boring things, I’m not doing my job right! Plus, I really enjoy the teaching and mentoring ends – working with younger scientists (from middle school students up through Ph.D. students) is really a joy for me.

What do you do?
I figure out how stuff rots in the ocean. Microorganisms are naturally present everywhere on Earth, and most of them eat food and “breathe out” carbon dioxide, just like us. I try to figure out what kinds of food microorganisms in the ocean (and in lakes and streams) like to eat, and how they digest it.

How does your science contribute to the understanding of climate change or to the betterment of society in general?
Microorganisms have to “breathe in” some chemical to help them turn their food into energy. Some microorganisms breathe in oxygen like we do, while others breathe in some pretty weird chemicals like iron or even uranium. The balance of oxygen, carbon dioxide, and other chemicals on Earth’s surface has a big effect on what life on Earth is like. We’re currently worried about too much carbon dioxide in the atmosphere, for instance – but if there were zero carbon dioxide in the atmosphere, Earth’s oceans would freeze solid! Three quarters of the Earth’s surface is covered by oceans, so the activities of ocean microorganisms have a big effect on Earth’s environment as a whole.

What are your data and how do you obtain your data?
I like to combine data about the chemical composition of organic matter in the ocean (i.e., leftover phytoplankton and plant matter, aka the stuff that is rotting) with measurements of the activities of the microorganisms that cause the rotting. There have been tremendous advances in DNA sequencing technologies in the past few years, so even though my background is in chemistry I am beginning  to understand what kinds of reactions microorganisms are capable of carrying out.

What advice would you give to young aspiring scientists?
Ask questions, and then read to learn the answers! For younger scientists, there is a journal called “Frontiers for Young Minds”. Just like any other respectable journal, the articles here are written by scientists and then peer-reviewed by other scientists. For more advanced folks, there are quite a few high-quality open-access (i.e., free) journals. Good ones include PLoS One, PeerJ, the Frontiers family of journals, Science Advances, and Nature Communications. These are the real deal – scientists writing for other scientists. You can use Google Scholar to find papers. Find a subject you’re interested in, and read everything you can about it! You won’t understand everything right away, but that’s OK – I find stuff in papers that I don’t understand all the time. The only way around that is to keep reading. This is learning science the hard way, but if you can spend some time reading and thinking about other people’s papers, you’re well on your way to becoming an expert.

Follow Drew’s updates on his website and/or Twitter!

Mosasaurs preying upon echinoids

Eggs for breakfast? Analysis of a probable mosasaur biting trace on the Cretaceous echinoid Echinocorys ovata Leske, 1778

Christian Neumann and Oliver Hampe

What data were used?

The authors examined over 7000 specimens of Echinocorys for this study. Echinocorys is an extinct (no longer living) group of echinoids, commonly known as sea urchins or sea biscuits! Specimens were obtained from field excursions by the authors as well as examination of multiple museum collections. From examining such a large number of specimens they were able to identify many different types of predation traces but focused on the extraordinary bite traces for this study.

Methods

Each of the tooth imprints was measured as well as careful measurements of the test (body) of Echinocorys. Images of the trace (tooth imprints) were taken at various angles to visualize the structures in greater detail. A bite experiment was conducted by creating resin models of possible predator skulls with movable jaws. The skull could then simulate biting into modeling clay versions of Echinocorys. The resulting traces were measured and compared to those found in the real samples of Echinocorys.

Results and Discussion

Figure containing the images of the bite marks on the echinoid. The top part of the echinoid was not preserved so we are seeing the bottom side only, note the anus has been labeled and is not one of the punctures! (c) shows us the fine detail of where the echinoid healed the puncture wounds!

The results of this study indicate that the biting trace pattern was produced by a predator with large cone-shaped teeth that were arranged in a forward pointing direction. This was interpreted from the strange pattern in the traces. Two bite punctures are smaller and oval in outline where as two others are circular and larger, this is likely due to the angle at which the teeth made contact with the echinoid test (body).

The fact that the bite did not destroy the echinoid skeleton is quite interesting and could be interpreted as the attacker’s skillful prey handling and biting mechanics. Also, echinoid tests are very well structured, built from a series of meshwork structures that help reinforce the skeleton. This makes echinoid tests more difficult to crush compared to other invertebrate organisms such as snails or clams. Even though this echinoid sustained large punctures, it was able to begin to heal as evidenced by the newly developed skeletal material within the punctures seen in the figure above. This is not uncommon in echinoderms and has been well documented through time, quite amazing creatures!

The authors compared the bite punctures to other known predation traces in echinoids and found that it was not similar to those previously documented. They made comparisons to teeth shape, size, and when specific animals lived to attempt to identify the maker of these traces. The authors then used experimental methods with their resin models and clay-modeled echinoids to better determine the probable trace maker and found that it is most likely a globidensine mosasaur. This is from the teeth shape, pattern, time period they lived in, and experimental method to indicate the angle of teeth as they penetrated the echinoid.

This figure shows us the detail of the forward facing teeth matching up with the punctures on the echinoid test (body). In (c) we see the part of the echinoid not preserved in the fossil record.

Why is this study important?

This study represents the first likely record of mosasaur predation on echinoids. Mosasaurs were apex predators but were also opportunistic predators, as evidenced by this study. They didn’t just eat the most filling prey but also nibbled on those smaller animals that were shelly and lived on the seafloor.

The big picture

Predator-prey interactions can be observed today in a variety of environments and habitats but in the fossil record we are limited by what ecosystem interactions are preserved through time. Trace fossils are particularly useful in gaining a better understanding of how organisms interacted with one another in the past! It’s often quite difficult to gain a full understanding of the organism that left the trace since all we have is evidence of the behavior but this work provided a thorough examination of possible trace makers and even provided an experimental test to further support their idea!

Citation

Neumann, C. and Hampe, O. 2018. Eggs for breakfast? Analysis of a probable mosasaur biting trace on the Cretaceous echinoid Echinocorys ovata Leske, 1778. Fossil Record, v. 21, p. 55-66, doi: 10.5194/fr-21-55-2018

A journey into geology

Rose here –

Howdy! Today I want to share with you some of my journey to get to where I am in grad school. I am currently finishing up a master’s degree in geology, but I didn’t always plan on going to grad school, or even going into science.

Growing up in the Pacific Northwest, some of my favorite books were the ones on earthquakes and volcanoes, which were both very real geologic hazards in the area I lived. Someone gave me a book on identifying rocks and minerals and I started a rock collection with rocks I found down by the river or in my parent’s driveway. My grandpa loved rocks and geology and taught me how to identify various rocks and minerals and even pan for gold with sand and gravel he brought back from the Mojave desert in California.

However, by the time I got to high school I was struggling with algebra and higher level science classes and didn’t think I had what it takes to be a scientist. There were no high school level geology classes offered at that time and I didn’t even know that “geologist” was an actual job title. I discovered that I was really passionate about education and helping folks with special needs so I decided to go into special education.

This is the group photo from the 2012 GEOL 210 course at CWU, an introductory field methods course. We took this photo standing in the White Mountains near Bishop, CA with the Sierra Nevada range in the background.

After high school, I started at nearby Green River Community College (GRCC) so I could save money by still living at home. In the spring of my second year I had to take a science elective and ended up in Geology 101. I could write a whole post on how important geology classes at community colleges are, but I’ll save that for next time. This class quickly became my favorite class from my time at GRCC. The professor focused on how geology can be useful in our daily lives by framing each unit in terms of local geologic hazards to consider when buying a house or how to know what geologic processes have occurred when looking at a landscape. This made geology seem very interesting and relevant.

Now that I knew what geology was all about and what geologists do, I started seriously considering a career as a geologist. I loved the idea of studying the earth and the processes that formed it and are still shaping the landscape today. I especially loved learning about different hazards that affect people’s lives in different places in the world and how geologists can help prepare for and mitigate after disasters. The accelerated pace of college classes seemed to be what I needed to finally figure out higher level math, and I was actually enjoying my algebra and chemistry classes. I started paying attention to geology stories in the news and was in my professor’s office almost every day to talk about a recent earthquake or a cool rock I had found, etc. I decided to pursue a BS degree in geology after finishing at community college and looked into quite a few undergrad programs from Alaska to Ohio. I settled on Central Washington University, about an hour and a half from my childhood home, but on the other side of the Cascade Mountains so I got to experience a totally different type of climate and landscape. In the CWU geology department, every class that could had at least one field trip, and often more. There were good examples of almost every type of geologic process within a couple of hours of our university. I loved every class I took there and it seemed like every day was constantly reaffirming that this was where I was supposed to be. Even the informally dubbed “weed-out classes” I loved, which I was assured was the whole point: if you loved even the classes with 4 hour labs and 25+ hours of work outside of class time, slogging through all kinds of geology problems, then you were in the right spot.

Here we are setting up a geodetic survey station during a geodesy field course at CWU. We were down near Three Sisters, OR and used the GPS data we gathered to study how the earth is deforming (moving up, down, or sideways) near these active volcanoes.

When I was finishing up my bachelor’s degree and pondering what was next, I thought that I wanted to go to grad school, but not just yet. I had been in college for 5 years at that point and felt like I needed a little break. But then I attended a national Geological Society of America meeting in Vancouver, BC during the fall of my senior year. This is one of the biggest conferences for geologists every year, and there were scientists from all over the US and the world and from every branch of geology. I saw so many cool projects and was so inspired by all the interesting geology that I decided I wanted to be a part of that as soon as possible. When I got back I did some research and started sending e-mails to professors I was interested in working with. I didn’t get a single response to my first round of e-mails and was kind of discouraged. But I still really wanted to get in on some cool geology research so I sent out a second round of e-mails to completely different professors and heard back from all of them within a couple days! I was so excited to begin this journey and immediately started the application process, took the Graduate Record Exam (GRE), and waited eagerly for acceptance letters. I got in to two of the four schools I ended up applying to. I had a choice between living in Tennessee or Alabama, but decided I wanted to be closer to the Great Smoky Mountains (a dream destination since my childhood) so I went with Tennessee.

Here we are sitting next to the Borah Peak fault scarp in Idaho. This was during senior field camp and we had to map out the extent of the scarp and measure how much deformation had occurred.

I moved to Knoxville and started my master’s in the Department of Earth and Planetary Sciences at The University of Tennessee, Knoxville. I was prepared for an adventure, but even this one didn’t go the way I thought it would. My first project didn’t quite pan out the way I thought and I ended up switching projects and advisors toward the end of my first semester. This is way more common than you hear about…I have several other friends who switched advisors or projects as well. Sometimes it’s a personality or advising style issue, or sometimes the project itself is just not a good fit. The thing I had to keep reminding myself during this time was that it wasn’t a failure to change projects and not do what I thought I was going to, it just meant it wasn’t a good fit for me.

So I was on to my new project: contributing to a geologic map of a local area on Mars. Before starting this project, I didn’t know scientists even had the data to do geology on Mars! I was a little disappointed to not be doing field geology on Earth, but I thought this was a great opportunity to learn something new and expand my skills in geology and mapping. I discovered in undergrad that I loved mapping and structural geology (faults and earthquakes and how rocks move and deform). This project combined both by allowing me to map structural features on Mars and try to figure out a little about how they formed and contributed to the landscape in my study area. Throughout my time on this project I have come to appreciate the

I’ve been on this project for two and a half years now and I’m nearly done and thus began pondering again: what’s next? I applied to lots of jobs in geology or related fields and got only one phone interview. This is fairly common, but it’s still difficult not knowing what’s next. Then over Christmas break I remembered that in undergrad I had considered someday being a librarian. I am really passionate about reading and writing, about the community spaces libraries provide, about making information available and accessible to all. I had sort of pushed this idea to the side while pursuing my master’s in geology, as a “someday dream”. Now that I was almost done with my geology studies, I decided maybe “someday” was actually “now”. I did some research, talked to friends who were librarians, and sent more e-mails to professors. I ended up applying and being accepted to the Information Sciences program at UT to start in Fall 2018. I am so excited to explore the possibilities of combining my passion for geology and information: some potential jobs include positions at state geology libraries, the United States Geological Survey (USGS) library, national labs, or as a subject librarian at academic libraries.