Ron Fine, Citizen Scientist

The picture that appeared on the front page of the Cincinnati Enquirer in April, 2012, presenting “Godzillus” to the public with Prof. Carlton Brett (center) and Prof. David Meyer (right).

What is your favorite part about being a scientist, and how did you become interested in science?

From my earliest memories I have always had an interest in dinosaurs and fossils. I grew up in Bellbrook, Ohio, where I spent many a day playing in the creeks in Magee Park and the Sugarcreek Reserve. Both were loaded with fossils from the famous Cincinnatian series of the Ordovician. While collecting fossils is my absolute favorite, I’ve always been fascinated by science and nature in general, with interests in biology, geology, minerals, astronomy, engineering and physics, as well as art, cooking and photography.

What do you do?

I have a degree in Landscape Architecture, but I work as a mechanical designer in the aerospace industry. Currently, I design tools that are used to build jet engines. I create the 3D models and drawings, which are used to make the tools.

While I haven’t as yet spent much time doing my own research, I’ve been blessed to help the professionals with numerous papers based on specimens I collected. I love and collect all fossils, so I’ve not concentrated on any particular group or type. I feel this has been advantageous, as it gives me more opportunities to work with the various scientists who do have areas of specialty. Lately, I’ve been working with Dr. Alycia Stigall on brachiopods. In the past I worked with Dr. Roger Cuffey on bryozoans, and Dr.’s Carlton Brett and David Meyer on Godzillus. As a member of the Dry Dredgers, the oldest fossil club in North America, I get to contribute regularly. I take meeting photos for the website, bring in specimens for others to examine, and occasionally write something for the newsletter or website. I also volunteer, and am an exhibitor, at Geofair every year, and occasionally play fossil tour guide at local parks or give presentations with my portable fossil display.

Playing fossil field guide to teacher Brian Dempsey and fifteen students from Acton-Boxborough Regional High School, in Acton, MA, at Caesar Creek State Park in Waynesville, Ohio in May, 2017.

How does your research contribute to the understanding of climate change, evolution, or to the betterment of society in general?

I have a talent for finding rare, unusual or exceptional fossils. I bring these specimens to the attention of the professionals so that they can be properly studied, and sometimes, they are used to write a scientific paper and are deposited in a museum or university collection for future scientists to study. Godzillus has been my best effort so far. It actually became very famous! I collect everything prodigiously. The quality specimens are made available to professionals for research projects, and the rest is given to the Dry Dredgers to make the fossil kits that fund club activities, or given to school kids.

What advice do you have for aspiring scientists?

Your life will be far richer if you pursue your interests. Find others who share your passions, join a club, volunteer. You won’t regret it!

Excursions with Tennessee’s Governor’s School

Maggie here-

This past June, I helped teach biology, with a focus on vertebrate evolution, with Tennessee’s Governor’s School, a program for high school students to come and experience college life for a month. Last year, Time Scavenger mastermind, Jen, wrote a post about what Governor’s School is, so I’m going to focus on the field trips that we went on!

Figure 1: Here we all are out in front of the entrance to the Gray Fossil Site! In addition to having a lot of information about the fossil site itself, there is a very hands-on science museum at the site.

Field trips are a really important part of learning about science, but can also be really valuable in showing young students what careers are available to scientists. Most students understand that scientists have all kinds of different research interests and biologists don’t spend their days rehashing high school biology curriculum, but it can be hard to imagine what else you would do with a degree in biology without seeing it in action. So, to show our students what all biology encompasses, we went on four field trips this year to the Gray Fossil Site, Oak Ridge National Lab, ProNova, and fossil collecting in east Tennessee!

Our first field trip was to the Gray Fossil Site, a Miocene (4.9-4.7 million years ago) fossil assemblage. This site is really cool because it is a lot younger than most fossil sites in east Tennessee and they have a plethora of vertebrate fossils preserved there. They have found everything from tapirs (similar in look to a pig) to alligators, mammoths, and even a new species of red panda! We unfortunately went on the paleontologist’s day off, so we didn’t see anyone actively working at the site, but we could see the pit that is being excavated this summer as well as peek into the preparation labs to see which fossils are currently being cleaned and put back together. After our tour we had some time to explore the museum that is a part of the Gray Fossil Site which does a good job of explaining what the preserved environment is like, how the site itself was discovered, and what the roles are of the scientists involved at this site.

Figure 2: An image from ProNova’s website showing how protons can more directly target a tumor when compared to radiation therapy. By more directly targeting a tumor, the patients risk of developing complications (including different cancer later on) from healthy tissue being exposed to high levels of radiation, decrease dramatically.

The second field trip that we went on was to Oak Ridge National Lab. We are super lucky living in Knoxville that we have a national lab ~40 minutes away that is welcoming to visiting groups! Since we were talking about biology, our main tour was in the biofuels (fuel derived from living matter) lab. There we discussed the major setbacks to biofuels (large land areas needed to grow plant matter to turn into biofuels, making sure that the carbon footprint of the growing and production of biofuels was also lessened, etc.) and how scientists at Oak Ridge are trying to solve these problems to make biofuels more readily accessible for large-scale use. In addition to biofuels, we met with other scientists and talked about big data and the computing power of the supercomputers housed at Oak Ridge. There’s nothing like talking about supercomputers and all that they can to do to get a bunch of science nerds buzzing!

Our third field trip was to ProNova, a facility that is using proton therapy to fight cancer. This field trip was particularly exciting to our students because many of them want to go into the medical fields, but was also a great learning experience for me! Using protons to treat cancers is a relatively new treatment, so none of us had any idea of what to expect, or what we were going to learn. At ProNova, they use large electromagnets to generate a beam of protons that can be directed to target tumors and that beam has more control than radiation, so only the tumor is being “attacked” by the protons, not the tumor + healthy tissue. The coolest part of this field trip was being able to go behind the scenes and see the magnets and resulting beamline that then is directed into treatment rooms and eventually into patients!

Figure 3: Left: One of the receptaculites specimens that was found while we were fossil collecting. You can see in the image on the right how similar they look to the center of a sunflower!

Our final field trip was to go fossil collecting in east Tennessee. While we weren’t collecting vertebrate fossils (east Tennessee is chock full of lovely invertebrate fossils-I might be a little biased in calling them lovely!), many of our students grew to appreciate paleontology over the month-long course and were excited to be able to collect their own fossils to bring home. Most everyone found crinoid stems, receptaculitids (an algae that looks a lot like the center of a sunflower), and bryozoans (small colonial organisms). We also stopped to look at a wall that was made almost entirely of trace fossils!

While we spent a lot of time in the classroom discussing vertebrate evolution and all of the different aspects of science that play a role in understanding how life and humans evolved, our field trips provided our students with real world applications for the science that they were learning. And from my perspective, the field trips were a way to get ideas of how to present this kind of material in my classroom, as well as to collect current research examples to help answer questions of why biology and vertebrate evolution are important to our understanding of the world! Governor’s school is a really intense month for both the students and the teachers, but the field trips gave us all a chance to connect and have candid conversations about science. It also gave me a chance to reflect on the field trips I took as a young scientist, and how they shaped my desire to become a scientist–so remember, field trips may appear on the surface to be just fun and games, but are incredibly important to the learning process!

Geological Society of America Meeting 2018

Adriane here-

The first slide of Jen’s GSA talk.

In early November, some of the Time Scavengers team (myself, Jen, Sarah, Maggie, and Kyle) attended the annual Geological Society of America Meeting. This year, the meeting was held in Indianapolis, Indiana; a nice midwestern city that was very walkable with lots of restaurant options (yes, I judge cities based on the quality of their food). In previous posts, we’ve talked about these annual (some being in Canada) and regional conferences and their importance. Here, I want to provide an update on some of the scientific and educational aspects of Time Scavengers that we presented at the meeting. As some of you may know, our site isn’t just an educational website; Jen and I are also using the site as a sort of experiment. Specifically, we want to know how we can best reach a broad audience using social media and social media advertising tools. I’ll tell you about our presentations, and the major findings from each one!

First, Jen gave a wonderful overview talk about the Time Scavengers site. She gave her talk in an educational session, which are not as well-attended as the science sessions in general. Her talk included the story as to how Time Scavengers began and the motivation behind the site, the reason for inviting collaborators to join us on the project, and the purpose of each part of the site (blogs and static informational pages). Since we were at a conference full of other geologists and avocational scientists, we also put out a call for anyone interested to contact us for collaboration (such as writing a blog post). Jen’s talk was well-attended and well-received! The room was packed, and several people took a picture of the contact information slide during Jen’s talk. We also received good feedback from people regarding the talk throughout the conference. The last part of the talk included to images of our posters that Sarah and I were to present later in the week. So having the overview talk first, before the posters were presented, set Sarah and I up quite well.

Sarah presenting her poster on image heavy vs. non-image heavy blogs that she has written.

Sarah was the first to present a poster on her blogs, in which she has used several large and high-quality images to explain the geology of a particular region (see her posts about Acadia National Park and the Bay of Fundy). She compared how these posts engaged readers compared to some of her other posts that were not so image-heavy. To compare these posts (lots of images vs. not so many images), she looked at the number of visitors to the site on the day each blog post was released, as well as the engagement rate of each post (engagement rate= number of interactions/number of people who see the post). Sarah concluded that over time, her image-heavy posts would gain more views and interactions than her posts with less images.

I was the next to present a poster later in the week. The data I presented was related to six advertisement campaigns Jen and I set up on Facebook. The purpose of paid advertisements are to gain a larger following on social media and to reach a wider audience. There are two main types of ads on Facebook: a paid ad, where you create an ad in the Facebook Business Manager site, and a boosted post. A boosted post is a post that is already on social media (that shows up on a page’s timeline), but you pay money for that post to be ‘broadcast’ to a larger audience outside of the page’s followers. Jen and I have experimented with both types of ads, and we have also experimented with using both static images in the ad and short slideshows.

Me and my poster, in which I presented data relating to the success of our social media ad campaigns.

To compare which ads did best, I looked at the number of engagements each ad received (clicks, reactions, shares) and the number of visitors to the site for the period for which the ads ran. I also calculated the engagement rate for each ad. It turns out that the ad with the highest engagement rate was the first ad (boosted post, static image), although this ad did not have the highest number of engagements. What was different about the first ad is that Jen and I shared it into several groups on Facebook (Women in Paleontology, etc.). The ad that gained the most engagements was a 6-second slideshow with images from the site (it was a paid ad). However, this ad had one of the lowest engagement rates, meaning although it was seen by a large number of people, not many of those who saw it interacted with the ad.

I then compared the number of new visitors to the site, the percentage of women and men, and percentage of site visitors by age group during the ad campaigns to the same variables for the entire site. The number of site visitors during ad campaigns didn’t increase substantially, and the percentage of women, men, and site visitors by age group remained relatively the same from the site total. This indicates that our ad campaigns aren’t doing a great job getting new people to visit the site. Instead, the site attracts an audience by releasing new blog posts and content. In our site user data (which shows us the number of visitors to the site on any given day), peaks in users occurs on days where we release new blog posts. So for the Time Scavengers site, maybe paid advertisements aren’t the way for us to build a larger community and reach more people.

To recap, all three of us who presented on Time Scavengers (Jen, Sarah, and I) had great conversations with other people who are also making educational content and work in the realm of science communication. All in all, GSA 2018 was a huge success in terms of sharing science, meeting new people, forming new collaborations, and learning about the cool new things our friends and colleagues have been working on!

 

Sadie Mills, Environmental Educator and Museum Project Coordinator

Using Ollie, a non-releasable Eastern Screech Owl, to teach students about bird adaptations at the Rock Eagle 4-H center near Eatonton, Georgia.

My curiosity about the natural world started on family camping trips. One regular destination was the shores of the Sea or Cortez, where the extreme tidal range (up to 9m!) produced incredible tide pools full of stingrays, octopi, brittle stars, and more. My fascination with nature and true love of being outside eventually led me to pursue job opportunities (and later a master’s degree) in environmental education. Environmental education aims to help people understand, appreciate, and think critically about their interactions with all aspects of the natural world. This can be accomplished through outdoor experiences, laboratory activities, live animal encounters, and more. My work days have included leading students on forest hikes, taking families seining at the beach, and educating public visitors at rehabilitated sea turtle releases. While many of these experiences are short-lived, they often spark enduring curiosity, positive feelings about nature, and sometimes positive behavior change among participants. Not every interaction makes a difference, but when they do the results can be quite powerful.

Tide-pooling at Puerto Peñasco (Sonora, Mexico), one of the places that got me hooked on nature. (Tragically, the 101 Dalmatians sweater is too blurry to properly appreciate.)

To remain effective, environmental education must adapt to our changing world, and in the 21st century this means branching out into virtual education. In my current position as coordinator for the FOSSIL Project, I get the opportunity to engage with audiences through online interactions on social media and our website (www.myfossil.org). FOSSIL (Fostering Opportunities for Synergistic STEM with Informal Learners) is an NSF-funded initiative that supports a community of amateur (avocational) and professional paleontologists with the goal of shared learning. Utilizing online platforms has allowed us to build a diverse and widespread community of learners, but also a community of educators. Each of our participants brings knowledge to the table, and the online space makes it easy and comfortable for them to share their experiences. This fall, we hope to further expand our community with the introduction of an accompanying mobile app. This tool will allow users to document and share their paleontological experiences directly from the field. I never thought I would contribute to an app, but I am now so excited to see the learning opportunities that will result from this new technology.

Teaching students to seine for surf-zone fishes and invertebrates on Tybee Island, Georgia.

One of the great joys of working as an environmental educator is seeing how excited people get when they learn something new, especially people who may be discovering their passion for science for the first time. For those thinking about a future in science, I hope you will consider the many career paths available to you. If you like technology or inventing, you can help develop the tools scientists use to make new discoveries. If your passion is writing, you can pursue science journalism or help edit science publications. You can conduct investigations as a researcher, teach others as a formal or informal science educator, pursue art as a science illustrator, or help shape policy as an environmental lawyer. In its own way, each job makes an important contribution to science, and society needs curious science enthusiasts in many different roles!

Early fish development sheds light on limb evolution

Unique pelvic fin in a tetrapod-like fossil fish, and the evolution of limb patterning

Jonathan E. Jeffery, Glenn W. Storrs, Timothy Holland, Clifford J. Tabin, and Per E. Ahlberg

What data were used? The data were primarily gained from a single fossil specimen (with both pelvic fins) from the Museum of Comparative Zoology (MCZ) at Harvard University. But several have been described and are stored at the MCZ.

Figure 1: Pelvic region of the specimen from the the MCZ. (A) The original specimen and (B) the line drawing of the same specimen to better visualize the specific elements of interest. Here we can see both hind-find are isolated in different colors.

Methods: First the specimen had to be carefully prepared as the bones are still embedded in matrix. Any broken pieces of the fossil were glued back together. The fossils were imaged using a micro computed tomography (CT) scanner, which takes many fine images through the specimen using X-rays. The images can then be compiled and reconstructed in more complex 3D rendering programs. In this study, the authors used Avizo. The fossil specimens (real and digital) were examined thoroughly. These authors used the data collected from their thorough examinations and used it to explore developmental and evolutionary questions.

Results: The new data shows the general tetrapod pattern of a humerus (arm bone that connects to your shoulder) connecting with the forearm bones. In a phylogenetic, or evolutionary, context this provides additional information in the transition from fin limbs to tetrapod (animals with four legs) limbs we can easily recognize today – these are represented in the diagrams above the tree. The developmental comparisons of modern skeletons and allows the researchers to compare modern animal growth to these extinct forms. It is still unclear how the three bones came from the one (refer to the tree figure). The researchers ruled out a known protein can cause duplications of bones because each of these three bones is distinct, rather than having two of the same bone repeated.

Figure 2: Evolutionary history depicting the transition from fin to limb. The fore-fins/limbs are drawn on top and the hind-fins/limbs are on the bottom. Rhizodus is the genus of animal that is described in this paper and is found near the fin side of the tree.

Why is this study important? The three forearm bones in these pelvic limbs was an unexpected result from this study. It is quite different, even from the upper limbs in the same specimen and starkly different from other early finned fish. This study provides new evidence on the transition from fin to true limb. This specimen suggests that the fore-fins suggests that the mechanism of transition from fin to limb happens first in the fore-fins and later in the hind-fins.

The big picture: The fish to tetrapod transition has been well studied and is very important to understanding the evolution of most of terrestrial life. It is really difficult to find these specimens because they only preserve in very specific environments. This specimen is particularly important because it provides some new information that could help scientists reinterpret previously confusing results when the fore-fin/limb looks quite different from the hind-fin/limb in these more transitional forms.

Citation: Jeffery, J.E., Storrs, G.W., Holland, T., Tabin, C.J., and Ahlberg, P.E. 2018. Unique pelvic fin in a tetrapod-like fossil fish, and the evolution of limb patterning. PNAS, doi: 10.1073/pnas.1810845115

Advice on Academic Publishing & Coauthorship

Adriane, Jen, and Andy here-

Often one of the biggest challenges academics and scientists face is writing- namely, getting our research written up as a manuscript and published in an academic journal. We, as scientists, always commiserate about how hard writing is, and how we loath doing it, but I want to talk about a different aspect of writing and publishing that doesn’t get talked about nearly enough: collaborating with other scientists and working together as a team to get research published.

In the early years of academic publishing, it was very common for scientists to publish articles by themselves, or what is called a single-author manuscript. Today, however, the tide has changed, and it’s rare to find a published article with just one author! In fact, it’s not uncommon to find papers with more than 30 authors (such as those published that include an entire science tea, like a International Ocean Discovery Program expedition teams). Finding, working, and publishing with collaborators can be tricky, and at times seem daunting. However, if you know how to work as a team and navigate the collaborative waters, these partnerships will give back tenfold! In this post is some advice from some of the Time Scavengers collaborators on how to find, work with, and publish with scientific collaborators.

On Finding Project Collaborators

Jen: Start with people you know that are excited about similar ideas; these can be old lab members, peers or colleagues you have met along your career. For example, Adriane and I were in the same masters program and even though they parted ways to begin new paths as PhD students we kept in contact. So, starting this website was a simple task with two people in different fields who are passionate about educating the public. This connection has fostered further collaborations with Adriane and Sarah, who I found during her PhD program. We worked to create a web of scientists with similar drives but different technical toolkits. If you are new to a field, attending a large conference where you can be exposed to new people and ideas is a brilliant way to find new collaborators.

Adriane: Think of a collaboration with a colleague as you would any friendship: you want trust, clear and constant communication, and you want to have fun and be yourself with your friend! A collaborator is no different. When choosing who to collaborate with, make sure you get along with the person, and are able to have open and honest conversations with them. For example, Jen and I are great friends, and had a ton of fun together in graduate school at Ohio University. We have similar career goals, interests, and hobbies, and we can be totally goofy and honest with one another. For this reason, I knew we would make excellent collaborators building this website together.

If you are a graduate student, you are likely doing your projects on a tight timeline. For this reason, you need to be sure that your collaborator is someone who is willing to put time into the project so that it is finished on time. When collaborating with more senior scientists, make sure this person is invested in your success as a scientist. One of my dissertation chapters involves collaborating with a professor at another university across the country. I have worked all summer to pick foraminifera for stable isotope analyses, and when I have enough, I mail them to  my collaborator who will analyze the samples in his lab. Some of my samples weigh almost nothing, which means they will be tricky to analyze. However, I communicated my concern to my collaborator, and he has been wonderful in working his geochemical superpowers to ensure most of my samples are analyzed correctly (of the ~300 samples I sent him, only ~15 were unable to be analyzed!). Most importantly, he has gotten my results to me within weeks of me mailing my samples to him, which has put me ahead of schedule to complete all of my analyses (this is a rare occurrence in graduate school). So, I have excellent results from my samples, and I’m ahead of my research schedule for this project because my collaborator is invested in my success and the success of my research.

Andy: I have two sets of collaborators, basically. As a graduate student I started collaborating mostly within my lab. My work with Chris Lowery (@CLowery806) has produced one paper, another in review, and a third building on the second, with an additional collaborator. We’ve also done a workshop together, and gotten each other talks, etc. Even though we’re directly competing for jobs at this stage in our career, it doesn’t affect our working relationship. That’s the kind of collaboration you should look for, one that makes both people better candidates for future jobs.

The second is with a couple of people. I was sitting at a wedding celebration for my then-supervisor, and another scientist and I started talking about work (as happens whenever you put two of us in a room together). She and I continued emailing, she brought in a friend who’d also been thinking about the same problem. These people have no connection to my lab, we’re just friends who are now working on grants and doing workshops together. We all bring different skills to the table, but most importantly we actually like each other. That makes working on projects easier. Working with people you don’t like sucks (this is also good advice for picking graduate advisors & postdoc supervisors).

On Working with Collaborators

Adriane: I can’t stress communication enough; this is THE MOST important factor when it comes to working with with collaborators. Bad communication can lead to assumptions, and well, you know what they say about assumptions. It can also lead to projects not being completed on time or people not understanding their role or responsibility within the project.

When you begin a new project with a collaborator or bring a collaborator on board to work with you, the first thing you should do is talk with them about your timeline, goals, and what everyone’s responsibility will be in regards to work done to complete the project. When I develop a new project with a collaborator, I like to outline the main hypothesis (or hypotheses) of the project, the methods, and the deadline for when each goal or analysis should be completed, and who will complete each goal or analysis. It is also a good idea to talk with your collaborator about how they prefer to share documents. Google Drive is my preferred method of sharing documents and writing papers with collaborators, but there are other options out there as well (e.g., Dropbox, Box, and Slack).

If I haven’t heard from my collaborator in a while regarding a project, I like to send them an email with the progress I’ve made on my part and check in with them. Like I stated earlier, it is very easy for all of us (students, postdocs, professors), to ignore one project for another. Sending an email to your collaborator and staying in touch is a good way to keep them motivated to compete their part of the project.

Andy: Skype or Google Hangouts are worth many emails when starting out and finishing. Depending on what you’re doing (workshops are very different than publications) but having every few month Skype meetings is well worth carving out the time for.

Adriane is correct, in the above, but optimistic. Best laid plans are wonderful, but all of the deadlines will fall apart. Don’t let that be discouraging. If you’re working with folks above the graduate level they’re managing students, writing papers and grants, teaching classes, and usually working on several other collaborative projects at once.

Jen: I agree with both Adriane and Andy and would like to add that you should maintain reasonable expectations. Somethings will go very quickly when you and other collaborators are really excited but you can’t shirk all other personal and professional responsibilities for a single project, that is unreasonable. Give yourself a flexible timeline but if you have set deadlines work within those confines.

Also, if something bothers you and you aren’t the PI or lead author say something anyway. You wouldn’t be on the project if the team didn’t value your input. Often times people get too close to their work and either lose sight of something or they implicitly understand the meaning but it may not always be clear to others.

On Publishing with Collaborators

Publishing with collaborators can be a tricky arena to navigate; Who will be the first author? How will the authorship list read? Does your collaborator even deserve co authorship on your paper? Does anyone else deserve co authorship? Different scientists may have different ‘rules’ pertaining to these questions, but here are some of our guidelines:

Who will be the first author of a study?

Adriane: Usually, the person that conceives the study and develops the hypothesis is the first author on a publication. There are exceptions to this, especially when a graduate student’s advisor helps the student conceive the study and leads them to develop the hypotheses. Outside of graduate school, the lead author of the study is the person who develops the project, invites collaborators, and does the majority of the writing and figure making.

Andy: When it’s a pair or group that works together frequently, then the first authorship can rotate. Sometimes there’s a handshake agreement that if the first authorship goes to one person on paper A, then it’ll go to the second person on paper B. This can lock you into a certain number of publications.

Jen: I agree with both Andy and Adriane and have used both techniques to determine authorship. Who is graduating first and in most dire need for publications can dictates authorship with rotations in the future as Andy said. Generally, it should be the person who conducted the most work on the project.

How will the co-authorship list read?

Adriane: This is a situation where communication is key. In a few of my projects, I have stated up front where my collaborator will fall in the authorship list. In other cases, the person that does the most work (after the first author of the study) receives second authorship, and so on. On other publications where everyone has contributed equally to the project, the authorship list is alphabetical by last name after the first author. However, this can cause issues if one (or more) of your collaborators feel like they have contributed more to the study, as alphabetical authorship allows nothing to be inferred about the contribution of the scientist to the study. Again, having open and honest conversations about authorship and how the authorship list will read early in the process is a great starting point.

Jen: This is also quite variable and field dependent. Sometimes names are all alphabetical, many times the PI of the lab is last indicating seniority, etc. I think there are effective and convoluted ways to describe and detail contributions per individual that lead to appropriate authorship lists. I generally tend to think in decreasing order of work contributed with the lab PI at the end unless there was no umbrella PI.

Who deserves co-authorship on your publication?

Adriane: My rule of thumb when it comes to co authorship is that whoever has contributed significantly to the study, i.e., you couldn’t have completed the project without them, deserves to be included as a co author on your publication. For example, I am currently developing a stable isotope record for the Tasman Sea in collaboration with my collaborator who is in California. Our geochemist at UMass who manages our stable isotope lab has been an essential part of making sure my analyses have ran properly in the lab. Therefore, he is being included as a co author on the study, even though he hasn’t helped to develop the hypotheses of the study or the methods. Without him, I wouldn’t have the data to even write a paper in the first place. Co authorship can also be offered to researchers who significantly contribute to the paper’s conclusions through discussions and suggestions of the data. However, this varies on a case-by-case basis. In these situations, I suggest using your intuition as to whether you think the study has been greatly enhanced through discussions.

I also have rules about who does not deserve co authorship on a study. If a person offers you off-handed advice, or you ask an outside researcher about a question pertaining to your study, this does not warrant co authorship on a paper. Scientists who have previously published data that you use in your study, whether that be in the form of a published thesis, dissertation, or journal publication, also does not deserve co authorship on your study. However, if you do use unpublished data from another researcher, you must absolutely include that researcher on your paper as a coauthor.

Jen: I wholeheartedly agree with Adriane. Significant efforts including but not limited to: data gathering, prepping, or analyzing and writing portions of the paper. Also, do not let people bully you into giving them co-authorship. If a related researcher wants to contribute to your body of work, fine. But just because they have strong ideas or opinions does not mean they get to commandeer your work.

The Value of Optional Field Trips

Adriane here-

Glacial potholes in the Shelburne Falls rocks. Image from Atlas Obscura.

This semester, I am one of our Introduction to Geology course teaching assistants (or TA for short). This class is offered through the Geosciences department at University of Massachusetts Amherst, and this semester, includes over 150 students! The course is designed to introduce our students, who are mostly freshmen and sophomores, to some fundamental principles of geology and important Earth system processes (such as volcanoes, plate tectonics, and earthquakes). Every time the class is taught, which is once a semester, we offer an optional field trip for the students. This trip is held on a Saturday, and we take the students all around the Berkshire mountains of western Massachusetts to show them the major rock formations and tell them the geologic history of the area. In this post, I’ll talk a bit about what we did with the students and why field trips such as these, although optional, are of value.

We began the day at 8:30 am on a rainy October morning. For the trip, about 85 students had signed up. The class TAs, of which there were five on this trip, had decided to each share the responsibility of leading the field trip. We were going to 6 stops altogether, so we each chose a stop at which to talk. Because of the rain, cold, and early start, a large majority of our students didn’t show up. So we left the university with about 65 students in tow!

Three of the TAs using compasses to find magnetic minerals, called magnetite, in the rocks. At this location atop a mountain, the rocks contain a lot of magnetite, which will make compasses go squirrelly when in close proximity.

The first place we stopped was in a nearby town, which is sort of famous. Shelburne Falls was the filming site of the movie ‘The Judge’ starring Robert Downey Jr. and Robert Duvall. But the other (and more important, in my opinion) reason the town is famous is because it contains features called potholes, which were first created when the glaciers glaciers that once covered the area about 20,000 years ago began melting. Potholes are round impressions in the rocks, made by small rocks and pebbles swirling around in a depression in a large rock body. Over time, the small rocks, pebbles, and cobbles carve out a larger and deeper depression. Potholes usually form in or near rivers, as the swirling and moving water is key to their creation.

After we marveled at the Shelburne Falls potholes, we loaded up the vans and took the students into the Berkshire mountains. We stopped at several places in the mountains to talk about the tectonic history of the region, and marvel at the views. Generally, the rocks in the Berkshires have a very long and complex tectonic history. Most of the rocks are a billion to 450 million years old. These rocks are severely faulted (or broken) and folded from orogenies, or times when volcanic island arcs or other continents slammed into North America. The east coast of North America has experienced three different orogenies over the past ~450 million years. From these, the Appalachian Mountain chain was built, which stretches from southeastern Canada south into Alabama. We explained this tectonic history of mountain-building to the students.

Talking to students at the site of the 2011 landslide caused by Hurricane Irene. Here, rip rap, or large cobbles, were placed between the river and road to stabilize the soil. You can see we’re standing on the rip rap in this image.

But we didn’t just talk about really old rocks on the field trip. We also showed our students more recent geological phenomenon, such as the effects of hurricanes on local river systems. In 2011, Hurricane Irene tracked across western Massachusetts, bringing with it torrential rainfall within just a few days. The weeks before the hurricane hit, several inches of rainfall had already fallen in the area, making the ground saturated. The mixed effects of already-soaked ground, plus additional rainfall, led to landslides in the area. One landslide took out half a road. The damage was so extensive and severe the road was closed for 3.5 months!

The second to last stop we made with the students was to an old marble quarry. The quarry was in operation during the 1800’s into the early 1900’s. However, the mining came to a halt one day when a fire broke out in the barn where the dynamite was kept. This fire, and the subsequent explosions, rocked the town. From then on, the quarry was taken over by the state and made into a state park. And I’m really glad it was: the park is lovely, with a huge marble amphitheater and a river that runs through a carved canyon. The park claims to have the largest natural bridge in the U.S., perhaps the world. I’m not certain if this is true, but the park is lovely. Because the age of the marble is Ordovician (~450 million years old), and I studied this time period during my masters degree, I happily chatted to the students at this stop. I even went full nerd and brought brachiopod and trilobite fossils with me to show the students what types of organisms probably lived in this region hundreds of millions of years ago.

Me, center, joyously chatting to our class about the Ordovician and lovely shallow seas that existed here ~450 million years ago. We’re standing in the marble amphitheater that used to be a quarry.

Our last stop was to a local graveyard just down the road from the quarry. Here, the gravestones are all leaning in different directions. They weren’t originally like that, so what caused them to move? It turns out that the graveyard is built on a drumlin. A drumlin is a small hill that was created by the glaciers that covered Massachusetts 20,000 year ago. Because the drumlin is made of sediments that aren’t well consolidated (or packed down), the earth ‘creeps’, or moves. Another way to think of this is the ground is still settling, much like a new house will settle over time on its foundation. After this stop, we packed up the students and headed back to UMass.

Lara talking about creep and why the gravestones have moved over time. Some headstones here date back to the late 1800’s, and it is those that exhibit the most movement. We know the headstones have moved because they are no longer lined up with the newer ones nearby or are no longer straight.

Geology is a tricky subject to teach, as a lot of the concepts involve thinking in 3D and sometimes 4D. Learning to think like this takes great practice, patience, and repetition. Field trips such as these expose the students to new concepts and ideas, and we get to teach them these concepts while on the outcrop, looking at the rocks. For example, when talking about the rock formations being smashed together and all pushed towards the west, we can do this while standing in front of a rock with folds and breaks. Using a compass, we can show the students that the folds are pushed, or tilted, to the west from orogenies that I mentioned above. Our students also get more face time with each other, with the TAs, and with the professor. Field trips often create a more relaxed and casual atmosphere than the classroom, so these are great opportunities for students to chat with us (and vice versa) and ask questions they wouldn’t necessarily ask in the class. Having large all-day field trips such as these are also wonderful for students who already are or are thinking about becoming geology majors. These students get a bit more experience with the major and a taste of what’s to come during their degree.

One of the problems in geology is lack of accessibility for students who are hearing, visually, or physically impaired. Because our science takes us outdoors much of the time, this isn’t attractive for students who may be wheel-chair bound or have a disability of any sort. In addition, the geosciences are losing students who did not grow up loving the outdoors, and who may not be comfortable going on day-long field trips. One way to make the class more accessible is to have an alternative option for students who cannot or don’t feel comfortable going outdoors for long periods of time. In our class, we also give the students the option to do the field trip virtually. One of our professors at UMass built a program with images, text, and figures that lets students ‘visit’ local rocks and formations of interest to learn about the geology of the region.

But the all-day optional field trip isn’t just great for our students, it’s also great for the teaching assistants. Because we all took turns talking at different stops, we each got practice talking to a large group of students and explaining geologic concepts. Most of the time, graduate students talk with each other and use science jargon that is not appropriate for undergraduates or the public (they just don’t understand the words we use). Talking with students who have no prior experience with geology makes us think about how we can explain things more thoroughly and simply. Leading the trip together also gives us experience in leadership and teamwork: we all have to work together to make the trip fun, informative, and safe for everyone involved!

 

Dr. Page Quinton, Paleoclimatologist

Dr. Page Quinton (left) and student Samantha McComb (right), completing field work on the Madison Group Carbonates in Montana.

What do you love about being a scientist?

My favorite part of being a scientist is the systematic approach we employ to answer questions. Yeah, we can use a variety of techniques to get at our answers, but the process of collecting and interpreting the data must follow the same basic rules! I’d also add, that I am particularly fond of being a geoscientist because of the combination of lab and field work (the best of both worlds)!

What do you do?

I could be classified as a Paleontologist, Geochemist, and/or Paleoclimatologist. Which I choose to call myself depends on who I am talking to (obviously, I go for Paleontologist when talking to young kids for the instant cool-points)! The reason for the multitude of possible names is that I apply a variety of techniques to answer questions about the climate. In particular, my research focuses on the timing and nature of climatic changes in Earth’s history and their relationship to how carbon is stored and distributed on the Earth (e.g. in the atmosphere as CO2 or stored in rocks as fossil fuels).

What are your data, and how do you obtain them?

I use fossils and their geochemical signals to understand the climate in the geologic past. The fossils I work with most are conodont elements (small tooth-like structures that make up the feeding apparatus of a marine eel-like organism). These fossils are composed of the mineral apatite which acts as a good record for the geochemistry of the water in which the conodont animal lived. From these tooth-like structures, I measure the oxygen isotopic ratios (the relative abundance of 18O relative to 16O). The oxygen isotopic ratio is dependent (in part) on the temperature of the water. By documenting changes in the oxygen isotopic ratio through time, I can infer changes in water temperature through time.

I also work with carbon isotopic ratios (the relative abundance of 13C to 12C) in marine limestones. These values can be used to reconstruct the distribution of carbon on the Earth’s surface. By looking at changes in the carbon isotopic value through time, I can infer changes in the global carbon cycle and therefore atmospheric carbon dioxide (CO2) levels.

Late Ordovician (~450 million years ago) conodont elements from northern Kentucky.

How does your research contribute to the understanding of climate change or to the betterment of society in general?

In addition to my scientific research I also teach undergraduate students at SUNY Potsdam. I always make sure my research informs how and what I teach. This is especially true for the Climate Change course I teach. That course focuses on how scientists know what they know and what types of evidence informs our understanding about climate. My hope for students completing that course is that they will come out of it with the knowledge and background to understand climate change.

What advice do you have for aspiring scientists?

Make sure you do what you love. Your job should be fun. That doesn’t mean every aspect of it will be a blast, many of the things I do can be tedious, but there is something very satisfying about setting out to solve a problem, collecting the data, and interpreting the data. For students interested in pursuing graduate education, the most important advice I can give is to make sure you can work with your advisor. I had a great advisor and it made graduate school a great experience.

Learn more about Page and her research on her website!

 

Urban Fossil Hunting

Mike and Jen here –

Figure 1

I couldn’t believe what I was seeing. I was on a tour of campus for my paleontology course, and Dr. Sandy took us to a low retaining wall in front of the Science Center. There it was: a large Pentamerus brachiopod (Fig 1). I’d walked by this wall for years and never noticed it before! During the rest of the tour, I saw fossils all over campus, and I had never even thought to look for them in the building materials.

Ever since then, I’ve taken closer looks at the stones used in buildings to see if there are fossils. You should, too! But ignore the igneous rocks and marble, just go for the limestone, dolostone, and sandstone pieces. The fossils I’ve seen include trace fossils and body fossils. Trace fossils are fossilized behavior of an organism, whereas body fossils are the actual skeletal or imprint of remains.

Figure 2

Primarily, I’ve encountered trace fossils. The Dayton Limestone, a formation found near Dayton, Ohio, is Silurian-aged (443.8-419.2 million years ago) limestone that was used for building foundations all over the state. It is full of burrows that are highlighted by a lining of hematite (Fig 2). The hematite likely came into the burrows after the organisms were done occupying them. This mineral helps the burrows stand out in the rock. The foundation on the left is a building on the campus of the University of Dayton. The founding on the right is a building in downtown Springfield.

Figure 3
Figure 4

Further exploration for urban fossils led me to find trails on the base of a lamppost outside of one of the courthouses in Springfield (Fig 3). I forgot a scale for this picture, but these trails were about 10 cm in length. I found this next burrow (Fig 4) in one of the retaining walls outside of the library at UD. See what I mean about fossils in places you wouldn’t expect them?

Marine animal body fossils are quite easy to find in building materials. I found these Silurian fossils in a retaining wall near some of the older buildings on UD’s campus. Large brachiopods and gastropods may be found in these stones (Fig 5), as well as colonial corals and horn corals (Fig 6). Sometimes it is difficult to recognize the fossils because the animal is within the rock and you are only getting a two-dimensional view of what it looks like.

Figure 5
Figure 6
Figure 7

Sometimes, the fossils can be very small and hard to pick out from the rock they are in. I walked by this wall for nearly 15 years and never noticed all of the gastropods, bryozoans, and crinoids until just a few weeks ago (Fig 7)! Another example of small fossils was found by Jen when she went to the Biltmore Estate in Asheville, North Carolina. She was chatting with her family when she looked down and recognized the rock, it was filled with small gastropods and bryozoans that she knew to be Mississippian (360-325 million years ago) in age (Fig 8).

Figure 8

Be sure to be on the lookout inside of buildings, too! Many building stones are made of fossiliferous rocks and they are quite visually appealing so they end up as table tops, counters, and even bathroom stalls! Jen saw this table, made of polished fossiliferous limestone, inside of the Biltmore house (Fig 9). I found these ammonites in the flooring at the Ohio Statehouse (Fig 10). Each side of the tile was about 2 ft in diameter.

Figure 9
Figure 10

Where Jen lived in Eastern Tennessee, the common limestone is called the Holston Limestone. This is the ‘marble’ that gave Knoxville the name of Marble City. Marble is a metamorphic rock whereas limestone is a sedimentary rock. Sometimes limestone can have really small grains that makes it look like marble. As a local rock it is used all over the city in a variety of places. It decorates the exterior of buildings downtown (Fig 11) and is even sculpted into monuments of past events (Fig 12).

Figure 11
Figure 12

Maggie and Jen went on a recent research trip to Oklahoma and noticed something interesting about their window sill in the kitchen (Fig 13). It was a nice pink color with lots of white specks. It happened to be the Holston Limestone from where they both were living in Eastern Tennessee! This rock has very specific features that allow you to identify it wherever you may be. Jen even discovered this rock in an old hotel (now a university) in St. Augustine, Florida.

These just a few examples of the fossils that we have seen used in construction and design. As you walk around city buildings, be on the lookout for limestone blocks, especially on older buildings. There may be a few fossils hiding in plain sight!

Figure 13

Cooking with Foraminifera Part I

Adriane here-

Stirring a solution of tap water and Miramine for use in our experiment.

A lot of the research my lab and I do is related to understanding how the oceans worked in the past, the ocean’s response to climate perturbations, and understanding plankton evolution. Every now and then, we find the need to do a different type of research: testing a new or old method. This fall, my lab mate Serena, my advisor, Mark, and myself have developed a little experiment to see if boiling foraminifera in different solutions has any effect on their shells. Specifically, we’re interested to see if boiling affects the isotopic measurements of the shells. This has not been tested thoroughly before, which is surprising. In this post, I’ll talk about the first part of the experiment, and I’ll elaborate on the other part of this experiment in a subsequent post.

Our samples split into three different solutions. Notice how different the contents of each beaker look! This is because the sediment types we chose have very different colors.

You may be thinking ‘why on Earth would you boil foraminifera in the first place?” When we, scientists, get in sediment samples from deep sea sediment cores, sometimes the sediment is very hard or full of fine-grained sediments. These hard and/or fine-grained sediments have a tendency to not want to break down and release the foraminifera shells contained inside. To aid in breaking down tough sediments, we often turn to boiling the sediment in tap water or other solutions.

To begin the experiment, Serena and I chose four different sediment samples from different places around the world and of varying ages. We split each sample into quarters to be tested in our boiling experiment. We then chose three different solutions in which to boil our samples: tap water, Sparkleen (a mild detergent) mixed with tap water, and Miramine (an oily substance used as a emulsifier and corrosion inhibitor, but also good for breaking down rocks) mixed with tap water. Each quarter of the samples we chose were placed in these solutions in a beaker, which were then placed on a hot plate. The samples were brought to a slow boil and left for an hour.

Eight of our samples boiling on the hot plate. We place a piece of venting over the hot plate and beakers to keep the beakers from falling off the plates.

The fourth quarter from each sample was used as a control for which to compare everything else against (from here out I’ll call these the ‘control quarters’). The control quarters were simply rinsed over a screen using tap water. Doing this removes the small sediment particles, but holds back the foraminifera shells.

This is what one of samples that was boiled in Miramine looked like under the microscope! It’s hard to see here, but the rounded bits of sediment are actually foraminifera. The large chunk to the right is a piece of sediment.

After the samples were finished boiling, we then washed each one over a screen in our sink, just like we did with the control quarters. These were placed in an oven overnight at a very low temperature to dry. Once the samples were dried, Serena and I picked out three different species of foraminifera from each sample: a species that lived at the very top of the water column, a species that lived deeper in the water column, and a benthic foraminifera species that lived on the seafloor.

The last step was to put the species we had picked from each sample into a vial for further analysis. The next step will be to put these vials in our mass spectrometer, a device used to measure the isotopic signature from each sample. We’ll then compare the measurements from the boiled samples to the control quarter samples to determine if the isotopic measurements from foraminifera shells are affected by boiling!