Jen Gallagher, Geneticist

What is your favorite part about being a scientist and how did you get interested in science in general?

Me at my happy place. On the afternoon before a long weekend, I finally have time to come into the lab and dissect yeast.

My favorite part about being a scientist is going into the lab, doing an experiment, and discovering something that nobody else knows. My uncle was in grad school when I was a kid. He studied fracture mechanics in metals, or crackology, as I like to call it. I visited his lab and he showed me his million-dollar microscope. He was getting a Ph.D. so I decided I would, too. I wasn’t interested in engineering. I liked watching nature shows on PBS and biology in school. In high school, I learned about DNA replication. DNA has directionality and can only be replicated in one direction but there are two strands held together in the opposite direction. When you separate the DNA there isn’t enough space to copy the other strand. The cell solves this problem by making short sections of DNA of the strand that is facing the opposite direction and then gluing them together. These are called Okazaki fragments and I thought that was cool. Also, in that class, my teacher showed us statistics on how many people get undergraduate, masters, and Ph.D. degrees and all the different careers you could do with those degrees. So at 16, I decided to get a Ph.D. and do research in biochemistry. I searched for schools that had strong undergraduate research in a real biochemistry program. I didn’t want chemistry and biology class, but a dedicated program. Once I did start a biochemistry project, I decided that wasn’t for me. Biochemistry involves reducing reactions to their bare minimums, but life isn’t like that. So, I traded the cold room and purified proteins for genetics. I like asking the questions and having the cells tell me the answers.

In laymen’s terms, what do you do?

I investigate why genetically diverse individuals respond differently to the same stress, usually a chemical. Every chemical is a poison in the right dose but also can be a medicine. Water is essential for life is also toxic in high doses. Drowning is a leading cause of premature death. The stress response is a complex reaction. The first thing that happens is that cell growth is arrested. It’s like if your house is on fire. Once you see the fire, you don’t finish washing the dishes and then find the fire extinguisher. There are common responses to stress and then there are specific ones. To find out how the cell’s response to a specific stress, we exploit genetic variation within a species. I compare cells that can successfully deal with the stress to ones that can’t and determine what are the underlying differences that govern that. Depending on the stress we sequence genomes, measure the changes in gene expression or proteins. We work on yeast because in general people don’t appreciate being poisoned and don’t reproduce as fast as in the lab. Yeast have a generation every 90 minutes. Yeast are fungi and are more related to us than to bacteria. They have important applications in baking, brewing, and biotechnology. Yeast share many biochemical pathways with us and so by studying them, we can then extrapolate that to humans. In my lab we are working on glyphosate, the active ingredient in RoundUp, MCHM, a coal-cleaning chemical, and copper nanoparticles, a novel antimicrobial material.

What are your data and how do you obtain them?

I am an experimental geneticist. We have tens of thousands of different yeast strains in the lab. Most of these yeast come from other labs. The yeast community is generous, and these are all freely shared. To understand how RoundUp resistance occurs in nature, we also collect yeast from different environments. We have several sites with different RoundUp exposures. We started with a reclaimed strip coal mine, a state park, and the university organic farm. We have taken the public and students from local public schools to collect samples from these areas. We bring the samples to the lab and teach them how to coax the yeast out and then purify their DNA so we can sequence them. We thought that the mine would have the highest frequency of RoundUp resistant yeast because they spray that area every year with RoundUp. The park has been a state park since the 1930s and RoundUp was invented in the 1970s. RoundUp is a synthetic herbicide and not included in the list of herbicides and pesticides permitted on organic foods. We were completely shocked when we found that the organic farm had the highest number of RoundUp yeast and the mine had the fewest. There could be several explanations. One is that the yeast weren’t specifically resistant to RoundUp but whatever genetic changes that had been selected to gave it a selective advantage in that environment also conferred resistance. When we further investigated the histories of these sites we came up with another idea. The organic farm wasn’t always an organic farm. Two decades ago it was a conventional farm and from that previous exposure, the yeast became resistant and never lost it. The state park routinely uses RoundUp to combat invasive plants. There is also a power line that spans the canyon and they use helicopters to spray RoundUp so that trees don’t grow into the power line. The mine is used as a study site to find genes that are important for trees to grow on poor soil so that biofuels can be made. They started that study the year before I started collecting yeast so only a year of exposure was not enough to select for resistance. So now we have an even better study. We can go back every year to the mine and collect yeast. We can track RoundUp resistance as it happens.

How does your research contribute to the betterment of society in general?

We are exposed to and consume chemicals every day. Differences in how we respond to those chemicals in part depend on small differences in our genome. We use these genetic differences to find out how cells are metabolizing chemicals successfully and survive or unsuccessfully and die. When the human genome was sequenced, we thought that all its secrets would be unlocked. While tremendous advances in biomedical research could only have been done with this information, there is so much that we don’t know how to read. It’s like finally getting the keys to the entire library but all the books are written in a language that you taught yourself and they’re words that you don’t know how to translate. Based on a sequenced genome, we are not yet able to predict a person’s medical conditions or how a person will respond to drugs. The chemicals that we study are important agricultural and industrial chemicals. With the overuse of herbicides, we are now facing RoundUp resistant weeds. We don’t know how to combat this because we only partially understand how weeds become resistant. The active ingredient in RoundUp inhibits a biochemical pathway that plants, bacteria, and yeast have but humans do not. Therefore, it has been challenging to study possible effects of RoundUp exposure in humans. All known acute poisonings have been from the inactive ingredients and not the glyphosate. However, chronic exposure is time-consuming and complicated to study. We are using yeast to determine if there are other biochemical targets of RoundUp in yeast that humans may have. These studies can’t be done in plants because RoundUp exposure is lethal and prevents the synthesis of nutrients but yeast can be supplemented with the nutrients that RoundUp suppresses. Other chemicals like MCHM have limited toxicological information. Several years ago, a massive chemical spill contaminated the water supply in West Virginia. It caused headaches, nausea, and rashes and nobody knew why. MCHM changes how proteins fold and doesn’t have a specific target like RoundUp. By using this chemical we are studying how changes in protein folding regulate metal and amino acid levels in the cells. Fungal infections are difficult to treat because they are immune to antibiotics. Antibiotics work because they exploit fundamental differences in the metabolism of bacteria from humans. Yeast are more closely related to humans so there are fewer druggable targets. Copper is an effective antifungal material, but it is expensive, and metal has several drawbacks. By incorporating copper into cellulose-based nanoparticles, cheap, moldable, and biodegradable materials can reduce food spoilage and infections from medical devices.

What advice would you give to aspiring scientists?

Be prepared to fail. Failure is an opportunity to learn. In the example of the RoundUp resistance, the results were the opposite of what we thought. We can’t change the results, but we did further investigation and found an even more interesting story. I think of this as lost keys. My keys are always in the last place that I look. Why? Because I stop looking when I find them. If you think you know the answer, you stop searching. There is so much to discover and so many connections of which we are not aware. By challenging how you think about something you can overcome your assumptions and chip away at the unknown.

Head to Jen’s faculty page to learn more about her and her research by clicking here.

New fossil from China changes much of what we know about early echinoderm evolution

A new stemmed echinoderm from the Furongian of China and the origin of Glyptocystitida (Blastozoa, Echinodermata)
S. Zamora, C.D. Sumrall, X-J. Zhu, and B. Lefebvre
Summarized by Time Scavengers contributor, Sarah Sheffield

What data were used? A single, beautifully preserved echinoderm (relatives of sea stars and sea urchins) fossil from South China, named Sanducystis sinensis. Rhombiferans are extinct types of echinoderms with diamond shaped plates.

Sanducystis sinensis, a new rhombiferan echinoderm fossil from China tells us a lot about the evolution of echinoderms from an important time in Earth’s history, the late Cambrian (~500-480 million years ago).

Methods: The new rhombiferan fossil was examined for all preserved features on its body; these features were ‘coded’ as characters for an evolutionary analysis. An example of a character: Does this have a stem? Yes=0; No=1. These characters were also used to code multiple other species of rhombiferan echinoderms. The reason for this was to figure out to what Sanducystis sinensis was most closely related. Computer programs, like PAUP*, take all of the characters coded and determine evolutionary relationships, based on the shared similarities between the species used in the analysis.

Results: Sanducystis sinensis falls within a large group of rhombiferan echinoderms called “Glyptocystitida” (similar to how humans are a large group of mammals). It’s an important find, as its place within the evolutionary tree of life is representative of a type of transitional fossil between a group of early rhombiferans that lack specialized breathing apparati and a group of more advanced, or derived, rhombiferans.

Why is this study important? This study paints a more complete story of how rhombiferans evolved through the Cambrian. It was not clear how the transition from rhombiferans without specialized breathing apparati gave rise to the more derived forms that we saw after the late Cambrian. This new find, Sanducystis sinensis, helps us to understand how that transition happened.

Big picture: Rocks from the late Cambrian (~500-480 million years ago) are very rare worldwide; this, of course, means that there are also very few fossils from this time as well. The late Cambrian is a very important time in Earth’s history, however, so finding fossils preserved from this time is critical towards understanding the evolution of life. Fossil finds, such as Sanducystis sinensis, have the potential to completely change what we currently know about how and when different groups of organisms on Earth evolved.

Citation: Zamora, S., Sumrall, C.D., Zhu, X-J., Lefebvre, B., 2016, A new stemmed echinoderm from the Furongian of China and the origin of Glyptocystitida (Blastozoa, Echinodermata): Geological Magazine, p. 1-11.

Applying to Grad School I: Paying for Your Graduate Degree

Members of the Time Scavengers team are writing a ‘Applying to Grad School‘ series. These blog posts are written primarily for undergraduate students who are applying to graduate programs (but will be useful for any transitioning graduate or professional student), and will cover such topics as funding and stipends in grad school, how to write and build a CV, how to network with potential graduate advisors, and how to effectively write statements for your applications. This is the first post in the series on various ways you can get paid to attend graduate school in STEM (science, technology, engineering, math) fields.


Jen, Adriane, and Sarah here –

Attending graduate school is an exciting prospect, but you can quickly become overwhelmed with deadlines, things to do, but mostly by the expense of it all. It’s no secret that today’s college undergraduate students are facing increasing tuition costs along with inflated interest rates on loans. Within public 4-year universities and colleges alone, tuition and fees rose on average 3.1% per year from the period of 2008 to 2019. Even within 2-year public colleges (such as community colleges), tuition and fees rose on average 3.0% per year within the same period of time! For student loans, interest rates range from 4.5% to as high as 7%, and that interest is usually compounding (meaning you will pay interest on the interest that your loan accrues over time). It can seem like there’s no way to escape college and obtain an education without paying dearly for it, especially if you want to attend graduate school right or soon after your undergraduate degree.

But fear not, there are several ways in which you can avoid taking out loans while pursuing a graduate degree, both MS and PhD. Since we are all geoscience majors, the advice and information we provide herein is more applicable to graduate degrees in STEM (science, technology, engineering, math) fields. Below, we discuss a few options to reduce the cost of attending graduate school. We also are very transparent about the debt we accrued during our undergraduate degrees and how that compounded over time. But mainly, we want to explain how you can get paid (yes, you read that correctly!) to go to graduate school.

First, we’ll discuss the different types of assistance you can be granted to go to graduate school. We’d like to stress that we do not advocate for paying for graduate school out of your own money if you’re majoring in a STEM field*, as you should be able to get an assistantship to pay for your tuition and provide a stipend (living expenses)**.
*we’re uncertain about non-STEM fields-please look for good resources to help you understand how tuition waivers and stipends work in other fields!
**some STEM industries will pay for their employees to go back to graduate school. This is an awesome option, but not available to everyone.

Assistance within the University

Teaching Assistant

Teaching assistants (TA for short) are graduate (MS and PhD) students who are paid to help teach classes and labs at their university. For example, Adriane taught Historical Geology lab sections at UMass Amherst, and had a blast doing it (so many cool field trips!). As a teaching assistant, you will also be involved with setting up experiments for labs, grading students’ assignments, helping on field trips, or even leading your own field trips! Being a teaching assistant can be a ton of work, but it is a great way to make money and sharpen your skills as an educator (important for folks who want to continue teaching in any capacity after their degree). There may also be opportunities to continue working as a TA over the summer, as these jobs usually do not include summer stipends.

Teaching assistantships often include tuition remission, meaning you are not expected to pay for your education. This is important when you are looking for graduate positions in the university. You want to ensure that you are receiving a stipend and tuition remission. Even though you are getting your education paid for there often are still associated fees you have to pay each semester. These fees can range from 100’s to 1000’s of dollars every semester and cover transportation, athletic, heath, and building fees on campus.

Research Assistant

As part of her RA as a master’s student, Adriane helped curate and digitize a fossil collection at Ohio University.

A research assistant (RA) are graduate students who are funded to do research or work on some aspect of a project. Usually, the money to fund an RA comes from the student’s primary academic advisor, or it could come from some other professor in the department. In most cases, an RA is only funded during the academic year, but it’s not uncommon that money for an RA is budgeted to fund the student over the summer. For example, Adriane and Jen were each funded for an entire year from their MS advisor’s NSF (National Science Foundation) grant, where they were able to build a website while working on their own research. The benefit of RA positions is that they are usually more flexible as to when you can get your work done. When Adriane was doing her MS degree as a research assistant, she would spend an entire two days of the week doing RA stuff, that way she had huge chunks of time to focus on her research. The downside to being an RA is that you don’t receive teaching experience or get to interact with students in a formal setting. This isn’t a huge deal, as there are usually opportunities to help professors out teaching their courses while they are away at conferences, doing field work, etc.

 

Internal University or Departmental Fellowships

Internal fellowships (and grants) are small to large pots of money that you can win from within your university or college. You have to do some research and keep up with deadlines on these because often they have specific requirements. While Jen was at UTK there were several extra fellowships you could apply for as a graduate student. Some were specifically for MS students others for PhD students – some were mixed! One was only for students in their first year and one was only for students in their last year. Jen was fortunate enough to apply for an receive a fellowship through the university to fund the last year of her dissertation. This allowed her to reduce her teaching load and focus more on writing. You can read about it by clicking here.

External Funding Options

External fellowships

There are fellowships, like NSF’s Graduate Research Fellowship Program (GRFP for short)-you write a proposal for the research you want to work on and submit it. It’s reviewed by experts in the field you want to specialize in. These are incredibly competitive across a national or even international scope, but they are great ways to fund your research! Often, you have to apply to these either before you begin your graduate program or early into your program, so look into it as soon as possible!

There are other options to acquire competitive fellowships, often to finish off your dissertation without being restricted by teaching or other responsibilities that take time away from completing your projects. NASA has a program that graduate students can apply for, but there are restrictions – you already have to be enrolled and your project has to fit whatever the theme of their solicitation is that cycle. Adriane won a similarly competitive fellowship for foraminiferal research, which you can read about by click here.

Tuition Remission/Waivers

In some jobs and careers, your employer will reimburse your tuition costs. These are often to benefit your employer, as investing in your education and training will make you a more well-rounded and specialized employee in your field. The amount that your employer will reimburse you also varies; some may provide 50% remission or 100%. This amount can also vary depending on the number of courses you take during your graduate career. If you think your employer offers tuition remission, it is best to have an open and honest conversation with them about how much they will reimburse you for, and how many classes or credits they will cover.

The Cost of Graduate School: Examples

Below is an outline of how each of us paid for our undergraduate, masters (MS), and doctor of philosophy (PhD) degrees.

Jen

Jen exploring Ordovician life with young minds at the Paleontology summer camp at the McClung Museum.
Undergraduate: Once I left home I was given access to funds from my parents that I could use to pay for school. I lived in the dorms my first two years which used up a lot of this money. I then moved into an apartment and took up three part-time jobs (lifeguard, gym manager, research assistant) to maintain my living and school expenses. This allowed me to save the remainder of the money in my college fund and use it to move to Ohio for my MS program.
MS: My first year at Ohio University I was a TA. My first semester I taught lab for Introduction to Paleontology and my second semester I taught Intro to Geology and Historical Geology. My second year I was on an NSF grant as an RA and worked on the Ordovician Atlas project for Alycia. Both summers I was awarded summer pay through this NSF project. My pay at OU was ~$14,000/year. My student fees at OU were ~$600/semester (summer was less like ~$200). Instead of taking out loans I took advantage of a loophole and paid late. There was a payment system but it cost extra. There was no fee (at the time) for simply paying a month late. It took some serious budgeting but was possible to slowly save for these extra fees.
PhD: I was a TA all four years at UTK and taught a variety of classes: Intro to Paleontology, Earth’s Environments, Earth, Life, and Time, Dinosaur Evolution. During my time here my department stipend was $15,000 and I earned another $5,000 annual award from the university. I was able to split my pay over 12 months rather than 9 months. I was also able to work extra jobs over the summer at the university to augment my pay. Year 1 I was TA for a 4-week summer course for an extra $1000. Year 2 I taught a 4-week summer course as instructor for $3000. Year 3 I taught governor’s school (4-week program for high school students) for $2000. Year 4 I taught a paleontology summer camp at the local natural history museum for $500 (but also had the fellowship, where I got $10k but was reduced teaching so only received $7.5k from department).

Sarah

Undergraduate: Full need based scholarship (shout out to UNC Chapel Hill for making my education possible!). My scholarship covered everything but summer school for the most part and I was hired as a federal work study student to pay for books and other necessities. I worked other jobs at the same time-I worked as a geology tutor and a lab instructor, namely, to cover other needs (medical care that wasn’t covered by insurance, transportation, etc.). I took out $7,000 in federally subsidized (i.e., interest doesn’t accrue until you begin paying) to cover summer classes and a required field camp.
MS: I was paid as a half RA/half TA for one semester. I worked the remaining 3 semesters as a full TA teaching 3–4 lab courses per semester (I was paid extra to teach in the summer). My base pay was $14,000/year in Alabama. I worked as a tutor for the athletics department one summer to help pay for groceries. I did not take out loans for my degree, though I was not able to save much money.
PhD: I was an RA on my advisor’s NSF grant for 2 years and a TA for two years. I also worked as a TA or a full course instructor for 3 of the 4 years. My base pay was $15,000/year in Tennessee. I took out $15,000 total in federally unsubsidized loans (i.e., loan interest began accruing immediately) to cover unexpected medical, family, and car emergencies. I also did small jobs, like tutoring individual students, helping professors, and babysitting to make a little extra money-my PhD department had a rule that we weren’t allowed to work outside tax-paying jobs on top of our assistantships.

Always looking to find that extra dollar in graduate school.

Adriane

AS (Associate of Social Science): I spent four years in community college, and lived at home while doing so. I worked 20–30 hours a week at a retail store to pay for courses and books. My grandmother did help me significantly during this time, so I was able to save up a bit for my BS degree when I transferred.
Undergraduate (Bachelor of Science): I took out loans for 3 years worth of classes and research at a public 4-year university, in total about $40,000. I received a research fellowship ($3500) to stay and do research one summer. I still worked at my retail job the first summer and on holidays to make some extra money.
MS: The first year I was a teaching assistant and my stipend was about $14,000 for the year. Over the summer, I won a grant from the university ($3000) that covered rent and living expenses. The second year I was a research assistant and made about the same as I did the first year. I think I took out about $5,000 worth of loans to help cover university fees and supplies.
PhD: Throughout my first 3.5 years, I was funded as a teaching assistant making $25,000 the first two years, then was bumped up to $28,000 the third year (the teaching assistants at my university are in a union, so we won a huge pay increase). For the last year of my PhD, I won a fellowship (click here to read about it) from a research foundation ($35,000) that pays for my stipend, research expenses, and travel to research conferences. Early in the degree, I took out about $5,000 worth of loans to help cover fees and supplies.

American Geophysical Union 2018

Rose here –

Last December I got a chance to do two things I have never done before: Visit Washington D.C. and attend the American Geophysical Union (AGU) fall meeting. The AGU fall meeting is one of the biggest geology conferences and is held every year in December. This year they broke records with 26,000+ attendees and 28,000+ abstracts submitted!

Here I am with my advisor, Dr. Wade Bishop from the UT School of Information Sciences, at the Data Help Desk in the exhibit hall, where we spent most of the conference.

My advisor was working on a project which required surveying attendees of the meeting and he was able to pay for me to come as well to help out with that. While I had to spend much of my time there at the Earth Science Information Partners (ESIP) Data Help Desk in the exhibit hall, I was able to get away and attend some talks and poster sessions. The project I was helping with was asking scientists who came for help at the Help Desk about their experiences, so we can figure out how to make the Help Desk more relevant and helpful for scientists at future meetings.

I flew in a whole day early so I could explore around D.C., because I knew once the conference started there would be so much going on it would be hard to get away. It was quite cold out so I bundled up in my jacket, hat, and scarf and headed out to see what I could find. I headed toward the National Mall, excited to finally visit the Smithsonian and all the memorials. I walked all the way to the far end of the mall first so I could see the various memorials. I visited the World War II, Korean War, Vietnam War, Lincoln, and Martin Luther King Jr. memorials. As a geologist, my favorite was the WWII memorial because of the variety of rocks used in cool ways. I also learned that besides the regular Vietnam War memorial wall, there is a memorial to the women who served the country and made great contributions during that time.

One of my favorite exhibits at the National Museum of Natural History. All of the minerals in this case are specimens of Corundum, also known as Ruby or Sapphire.

Next I visited the National Museum of Natural History. I had seen it in movies, but I was excited to see all the exhibits in person. This being AGU week, the most packed section was the rock and mineral exhibit. There was a line to even get in, and once in the excitement in the room was quite noticeable. It was so fun to see everyone excitedly discussing the different minerals, where they came from, and why they looked the way they did. These are the things we do for fun when you get a bunch of geologists together!

At the conference, while I did spend most of my time working in the exhibit hall, I had picked a few sessions of science talks to attend. The cool thing about conferences like these is that there are many simultaneous sessions in multiple fields of geology, so I could go see talks on anything I want. I often hop around to talks in fields other than what I work on, but since I had limited time to see talks this time I picked a few planetary science sessions to go see, and a few in areas that are important to me, like promoting equity and inclusion and dealing with sexual harassment in the geosciences. One of my favorite sessions was a lunchtime special session on the last day. AGU held a session celebrating the start of their 100th year, where they had speakers from many of their 25 sections give talks on how our scientific understanding has changed in the last 100 years in their field.

Visiting the map collection at the Library of Congress!

One of the coolest things I got to do was on the last day, right before we left D.C. My advisor knows someone who works at the Library of Congress (LOC) with the map collection, so we got to go and get a behind the scenes tour at the LOC. I loved seeing all the old and unusual maps they have there. The room where they store the maps is as long as 3 football fields! As a geologist it was especially exciting to see their collection of notes and maps from Marie Tharp, who used data from instruments on research ships to produce the first scientific map of the seafloor. This map was important because it showed us where the seafloor was spreading and gave us more evidence for plate tectonics.

I am so glad I was able to go to AGU in D.C. for the start of their Centennial celebrations, and I look forward to going again!

Sam Miller, Hydrologist

What is your favorite part about being a scientist and how did you get interested in science in general?
I enjoy exploring in the field to help find clues that support our theory and understanding of how our world works and using that experience to formulate better hypotheses and tests that will push the science forward. Our world is a fascinating place with endless opportunities to learn. Learning is humbling (“The more I learn, the more I realize how much I don’t know” -Einstein).

In laymen’s terms, what do you do?
I study streamflow generation in mountain environments of the western U.S. Or how snow(melt) becomes (stream)flow. Learn more about streamflow and the water cycle by clicking here. Mountains of the world have been termed ‘water towers for humanity’ due to the variety of downstream users reliant on water that originates as high-elevation snowpack. Population growth and migration combined with a warming climate is putting additional stresses on water resources originating from mountain snowpack, thus it is critical we have a thorough knowledge of how and where our streamflow originates.

There are a variety of approaches and scales used to study hydrology. I generally work at the watershed scale to perform stream gaging and measure natural tracers of the water cycle (electrical conductivity and water isotopes). Combining stream discharge and tracer data allows you to separate streamflow into different origins. Learn more about the field of hydrology by clicking here.

How does your research contribute to the understanding of climate change?
When temperatures warm, mountain snowpack begins melting earlier in the year. Earlier snowmelt and subsequent streamflow response has a variety of consequences ranging from biological impairment associated with changes to the natural flow regime to shifts in the timing and magnitude of water available for downstream reservoirs and irrigation. Importantly, earlier snowmelt often results in lower summer streamflow which can have detrimental effects in arid regions with an increasing demand for water. Part of my research aims to identify areas where this earlier shift in snowmelt is having the most adverse effects on summer streamflow by conducting an empirical, retrospective analysis from hundreds of stream gages in the western U.S.

What are your data and how do you obtain your data?
I use a combination of data I collect myself from field work in the Snowy Range of Wyoming, streamflow data from the United States Geological Survey (USGS), and snowpack data from the Natural Resources Conservation Service (NRCS). The USGS and NRCS data can be easily obtained from packages in R (‘dataRetrieval’ and ‘RNRCS’) but is less satisfying than digging 10 feet to install your own data loggers.

What advice would you give to young aspiring scientists?
I would advise young aspiring scientists to become proficient in a programming language (preferably several) as soon as possible. As computing power and data continue to grow, it is important that we make efficient use of our time. Also make sure you do not lose sight of the passions that drove you to pursue your career in the first place.

Building a Research Poster

Jen here –

Creating a poster for class, a workshop, or a professional conference can be a daunting task. No matter what I’m creating the poster for, I try to stick with a simple and clean background and then once the organizational structure is in place, start to fill it in. This usually results in huge changes as I progress through the content but that’s okay!

Before getting started on your poster there are a few major things you should think about:

  • What program do I want to make my poster in? Google Slides integrates well with Google Sheets (free), Microsoft Powerpoint is pretty easy to manipulate (not free), and Adobe Illustrator is excellent for really detailed work (not free). There are many other programs, such as Canva (free), that offer lots of integration for images, line drawings, and more.
  • Who is in your audience? This will help you tailor language, depth of content, and figure detail on your poster.
  • Are there poster requirements? Size can be dramatically different and it’s always easiest to start with the biggest poster allowed and cut it down if you don’t need the space.
Here is what I mean by ‘boxes’! A template I made in Google Slides to help guide students in poster making. The boxes shapes may change as the poster develops but you have to start somewhere!

Generally, I like to work with boxes. Boxes help keep the organization of the poster nice and tidy. A major title box at the top that includes your poster title, authors, affiliations, and abstract number (if relevant). I usually aim to have the title in 72 point font and then everything else is a bit less. Having your regular text between 18-24 point font is a pretty good range and headers somewhere in the 40s-50s.

The rest of the poster is subdivided into larger boxes for each part of your project. These generally include but are not limited to: Introduction, Methods, Results, Conclusions, and Acknowledgments. Obviously, science and other projects don’t fit neatly into these categories but it’s a good starting place and titles can always be changed! It often helps just to get something on the page and then you can modify things later.

It’s always good to make sure your poster can stand alone when you aren’t there to walk viewers through the content. This means I usually include introductory or background text to help set the stage for the reader and reduce the text throughout the rest of the poster. This means shorter text, phrases, or bullets through the methods and results to concisely walk the reader through your content. Full sentences can be useful for discussion, conclusions, and/or broad implications of your work but sometimes bullets are plenty! Once you get to creating, it should be clear how much or how little you need to say.

Don’t forget to include references and people who have helped you out in your acknowledgments section. If people are interested in how you phrased something they may want to look up a reference that dives more deeply into the content. You can use regular in-text citations on your poster or superscripts to keep it neat and tidy. It’s good to include funding, departmental (internal or external) equipment that helped with analyses, and anyone who helped you run the machines or gain access to specimens!

Here is a non-research based poster I recently presented. I made this in Canva and really used their graphics to build the poster. The colors and font also align with the FOSSIL Project’s brand guidelines.

The other major thing about posters is color schemes. Sometimes your supervisor or department may urge you to use school colors, this is fine but make sure you are following brand/logo policies (because they are confusing and there are a lot of rules). I like to throw in a lot of color wherever I can. It may be because I work on fossils and they are gray and often dreary-looking but I do believe that if your poster is visually appealing at first glance it will draw people over to you!

Quick Tips and Tricks

  • Make sure to include your affiliation (organization or institution)
  • Include logos of institutions or funding that helped support your project
  • Use colors that you like but that also help draw people to your poster
  • Send it to your friends and co-authors to edit before finalizing it
  • Always save it as a pdf when you send it off to be printed
  • Sometimes printing can take long, make sure you have enough time
  • Have fun, posters are an excellent networking opportunity

If you click here you can go to a template Sarah and I made when we were teaching a summer course. You can save a copy of this template to your Google Drive to play around with the different elements.

Society for the Preservation of Natural History Collections

Jen here –

Walking from the Field Museum to the Hilton to get my registration set up.

I recently attended the annual meeting for the Society for the Preservation of Natural History Collections (SPNHC). This meeting is where museum staff from around the world come together–mainly those that work in some regard with natural history collections. This can be zoological collections, herbaria, paleontological, or geological and there are many different aspects of collections care. Some attendees were curators, others collections managers, and many faculty that had smaller collections that they were working to organize and make available.

Paul Mayer of the Field Museum introducing the conference.

I was attending as representative of the FOSSIL Project. Over the past year I have been working with web-developers to modify the current upload process on the myFOSSIL web-platform. Anyone can upload their fossil collections to this site but we want to make the data that are really high quality available for anyone to see – this is done by sending the data to data aggregators like iDigBio and GBIF. These are portals that anyone can use to search for organism data. iDigBio is primarily the home for museum collections data and is a great tool for finding where specimens are located that you may want to do research on.

These aggregators are very powerful. Are you interested in when and where a certain animal lived? This is something you can easily determine with the data input into the portal. In many cases the data are not complete, but it is an excellent way to start thinking about really big questions about biogeography, ecology, evolutionary history, and biodiversity through time.

So, this conference was an opportunity for me to present the work that we have been doing to make the myFOSSIL platform set up in a way to easily send the data to these aggregators. I participated in a full day workshop on the Natural History Collections Club Network, a relatively recent project to create a network of student led organizations associated with natural history collections. This was a lot of fun getting to learn about how people had set up these clubs at their universities and to listen to what worked and didn’t work as they aged.

The second day of the conference was rather short and focused on the keynote speakers of the event. For the majority of the day we were all in one large room listening to these talks. The first was by someone at GBIF and he spoke about all of the available data and how things operate on their end. It was really interesting, especially since I am so interested in data mobilization (through making specimen data available online). The next talk was by the in-house artist at the Field Museum. She spoke about how she goes about her work and the different processes and timelines that go into large projects. It was incredibly fun to listen to her talk about art, natural history, and all of the connections. The third and final talk was by the author of The Feather Thief, a book about a young man stealing exotic birds from the Natural History Museum in London to sell to people to make fishing flies. Read more about the plenary talks by clicking here.

Kyle Copas on GBIF!
Peggy Macnamara on collections and creation.
Kirk Johnson on Lessons of the Feather Thief and the Tring Heist.

Although we sat in the same room for most of the day, I was able to connect with some really interesting people from all over the country. I tend to not be incredibly social, I’m a quiet introverted person for the most part. But when things got too loud, I would simply walk off and find a quiet spot – often, it wasn’t just me doing this, so I was able to chat with other introverts as well =]

The third and fourth days of the conference were filled with 15-minute talks by many different people. These talks were organized by themes, so you had to decide what sort of theme you were most interested at each point in the day. There was also a special session called ‘Specimen Spotlight”. Where you had 5 minutes and 1 slide to discuss an important and impactful specimen from your collection. I did not participate in this session but did sit in for almost an hour of specimens! It was really fun and an exciting way to learn about lots of different things very quickly. Check out a few that I was able to tweet about by clicking here.

I gave a talk on the fourth afternoon about our work and it was pretty well attended considering it was 4 PM!!! Everyone gets pretty tired that late in the day. I had a few good questions and then stayed for the group discussion at the end of the session. It was really productive and exciting hearing about how we can better serve and support small collections. I also participated in an education share fair on Friday morning. This was two 30-minute sessions where presenters shared information on an activity, lesson, or resource that may be of interest to others in the community. I walked through the myFOSSIL website and asked questions to the group about involving amateur paleontologists in the collections, how they could use the platform in their classrooms, or even when training their volunteers as a database management example before setting people loose on their own system.

Standing with a Quetzalcoatl reconstruction! Very impressive!
SUE’s new home in the Field Museum!

Overall this was a hugely fun and rewarding experience. I learned an immense amount about museum collections and networked with many different people. I never felt uncomfortable or unwelcome and everyone was very kind to me. As my first SPNHC meeting I say it was a huge success!!!

Check out #SPNHC2019 on Twitter for all the updates!

Robert Ulrich, Biogeochemist

What is your favorite part about being a scientist and how did you get interested in science in general?
My favorite part about being a scientist is being able to pursue the questions that pop up in my mind about how the world works and having the ability to share what I learn with others.

I got into science because I was always curious: I always wanted to know what everything was, how everything worked, and why everything is the way it is.

In laymen’s terms, what do you do?
Currently, for my first project, I study the different ways that marine animals make their shells/skeletons affect how they record their growth conditions. My second project will be looking at how a widely-used crystallization method affects this in a lab setting.

How does your research/goals/outreach contribute to the understanding of climate change, evolution, paleontology, or to the betterment of society in general?

Research: My research will help us better understand how the proxies people like paleoclimatologists use are recorded in biominerals. My research will also help us to better understand the different ways that these animals are forming their biominerals.

Goals/Outreach: My life experiences and activism thus far have motivated me to cultivate a career in academia. Growing up biracial and needing to navigate the boundary between my two backgrounds and growing up queer in a catholic household have taught me the lesson that I need to create my own space if I want to truly feel comfortable. As a graduate student, I have created spaces for myself as well as others from marginalized groups (i.e., Queers in STEM, The Center for Diverse Leadership in Science). I want to continue advocating for diversity and inclusion in STEM by challenging stereotypes of who is successful, and I believe that becoming a tenured professor would put me in an influential position to not just create spaces, but a position to effect the current culture at all levels: classrooms, departments, universities, academia, and policy.

Rob in the lab!

What are your data and how do you obtain your data?
My lab specializes is carbonate “clumped” isotopes. Measuring clumped isotopes measures the abundance of carbon-13 and oxygen-18 bonded to each other throughout the crystal lattice of the calcium carbonate shells. Ideally, this proxy correlates with and only with the growth temperature of the crystal and does not require knowing the isotopic composition of the growth medium. We are also able to measure the abundance of carbon-13 and oxygen-18 isotopes in the samples, which can also be used as proxies.

For my research, the samples for my first project are crushed shells/skeletons of a range of marine organisms that were grown in culture at the same conditions. This was additionally done at a range of atmospheric carbon dioxide concentrations to simulate the effects of ocean acidification. For my second project, we have synthesized amorphous calcium carbonate in the lab. This is typically done via flux (mixing two solutions to achieve saturation). We are then measuring the carbon-13, oxygen-18, and clumped isotope values of the samples while they are amorphous as well as at different points through the transformation. I believe may also test different ways of transforming the material!

What advice would you give to young aspiring scientists?
My advice to young scientists would be to not be okay with how things are or just “deal with it.” If you are the only person like you in your classes or program, that is not okay. I don’t say that to discourage, but to motivate effecting change.

Follow Rob’s updates on his website, Twitter, and Instagram! Also, in addition to Rob’s amazing research he is an active advocate for underrepresented groups in STEM.

Microplastics Alter Plankton Poop

Microplastics alter feeding selectivity and faecal density in the copepod, Calanus helgolandicus

Rachel L. Coppock, Tamara S. Galloway, Matthew Cole, Elaine S. Fileman, Ana M. Queirós, & Penelope K. Lindeque

Summarized by Adriane Lam

The Problem: There is a growing body of research that shows that microplastics, tiny (1um-5 mm) pieces of plastics, have made their way into the deepest reaches of our oceans and are being ingested by marine life. Microplastics ingested by animals have been shown to cause adverse health effects to them, but as consumers of marine animals, these same microplastics are making their way into our diets. As yet, we do not know the exact ways in which microplastics can affect human health on longer time scales.

Zooplankton, which are small animals and protists that float in the water column and feed on primary-producing phytoplankton, are an important link between phytoplankton and other, larger animals. Zooplankton make up the base of the food chain, and are the main food source of marine mammals such as blue whales.

Different species of copepods.
Different species of copepods.

One type of zooplankton is especially common in our oceans today. Copepods are marine crustaceans that are found in nearly every freshwater and saltwater habitat. In addition to being an important food source, copepod poop is an important part of the biological pump. In other words, these animals’ poop transports atmospheric carbon dioxide (which is trapped in organic matter, or fixed carbon) to the seafloor, where it is stored in seafloor sediments.  The poop also provides important nutrients to other animals that live within or on top of these sediments. Copepods have been shown to ingest microplastics in the wild. The ingestion of microplastics by copepods may alter the way in which these animals select their food. And of course, if microplastics are being ingested, they are also being exported to the seafloor in fecal pellets. This study was designed to look at how microplastics alter how copepods choose their food and how the ingested plastic materials affect the sinking rate of copepod poop.

Methods: In this study, the scientists grew three species of microalgae (all that copepods like to feast on) in the lab and spiked it with different types of microplastics. The microplastics included things such as nylon, which is commonly found in clothing, especially active wear, and polyethylene, which is the most commonly-used plastic in the world (it is used to make shopping bags, shampoo bottles, and toys, to name a few uses).

The microalgae with microplastics was then fed to the copepods back in the lab, where the amount of microplastics ingested. The fecal pellets from the copepods were then collected and rinsed over a screen. To determine if microplastics contained in the poop affected the sinking rate of the pellets, the scientists dropped the pellets into cylinders filled with filtered seawater. They marked where the pellet was in the cylinder every 40 mm. To determine how different each pellet sank with microplastics, the scientists also measured the rate at which copepod poop without microplastics fell through the water column. When the poop reached the bottom of the cylinders, they were taken out and examined under a microscope. This way, the scientists could count the number of plastic pieces in each pellet.

Results: The scientists found that copepods preferentially liked to eat microplastics in a smaller size range (10-20 um), with a preference for the polyethylene over nylon fibers. When the copepods were exposed to microplastics, they preferentially did not eat as much algae. In addition, the copepods shifted their preference for one species of algae over others. Nylon fibers impeded ingestion of algae that was a similar size and shape to the microplastics. The scientists think the copepods associated algae of similar size and shape with microplastics, and thus avoided eating that algae species in an attempt to avoid plastic consumption.

Images of the contaminated copepod poop. Image a contains nylon fibers, image b contains polyethylene spheres, and image c contains polyethylene spheres.

The study confirmed that fecal pellets that contained both polyethylene and nylon particles were slower to sink through the water column. There was a difference in sinking rates between poop that contained more polyethylene, a denser microplastic, compared to nylon, a less dense material.

Why is this study important? This study is one of several that highlight the ways in which plastics are negatively affecting our food chain in the marine realm. The reduced sinking rate of fecal pellets may also affect the rate at which carbon dioxde, a major greenhouse gas, can be removed from the atmosphere through photosynthesizing algae who are then eaten by zooplankton. If fecal pellets are left to float for longer, there is also a higher potential of the microplastics being re-ingested by other zooplankton through coprophagy (ingestion of fecal pellets). On long and short timescales, the decreased export of poop and fixed carbon dioxide to the seafloor may have large consequences, as plastic within poop could keep more carbon from being exported and stored on the seafloor.

Citation: Coppock, R. L., Galloway, T. S., Cole, M., Fileman, E. S., Queirós, A. M., and Lindeque, P. K., 2019. Microplastics alter feeding selectivity and faecal density in the copepod, Calanus helgolandicus. Science of the Total Environment 687, 780-789. Online.

Climate Science Day on Capitol Hill, Washington, DC

Shaina here-

Have you ever wished there were more scientists involved with politics or politicians who were more informed about science? I certainly have. So when an opportunity to travel to Capitol Hill to get training on how to meet with legislators about climate science- and to actually meet with their offices- presented itself I jumped on it. Policy proposals that impact science are happening around us all the time and the best way for scientists to help ensure that policies are backed by science and support the scientific process is for us to get involved. There are many different programs through various scientific societies that provide training to student scientists and early career researchers on how to communicate their work to policy makers. The specific program I participated in is called Climate Science Day and is coordinated by 12 different scientific societies. The training took place at American Association for the Advancement of Science (AAAS) in March 2019 and my participation was sponsored by the American Geophysical Union (AGU). The objective is to provide a non-partisan way for us to meet with congressional staff, begin building relationships with offices, and learn about some of the work that is currently being done on the Hill.

In total thirty five early career scientists participated and we were broken into teams of three based on geographic region. My teammates were Logan Brenner from Columbia University and Heather Sussman from SUNY-Albany, and our team leader was Lexi Shultz the Vice President of Public Affairs at AGU. Together we met with 7 congressional offices from Massachusetts and New York. To prepare us for the meetings we had a webinar and informational packet to go through in advance of the trip. These materials covered how Congress is structured, what the differences are between the Senate and the House of Representatives and how that impacts the work each side does, what the important committees relating to climate change are, and how to effectively communicate during meetings. They also emphasized the unified ask of “support, communicate, and use in policy discussions and decisions the scientific community’s consensus on climate science.” When we arrived in DC we had one day to attend a training at AAAS, meet our teammates, and prepare our materials for the next day’s congressional visits.

We had a limited time to prepare for our meetings. We all arrived the day before the meetings were to take place and attended a training at AAAS where we learned how to conduct a congressional visit, heard from a panel of staffers, and met our teammates and team leaders. To have a successful meeting you need to be knowledgeable about who you are talking to. Meetings rarely happen with the legislators themselves, instead they are usually with congressional staffers. The staffers are usually people with scientific backgrounds and occasionally they are themselves early career scientists interning as fellows sponsored by various professional organizations to learn more about the connections between science and policy. They are also very important to getting things done on Capitol Hill and are instrumental in carrying out the work that happens in the offices. Their time is extremely valuable and it is important to speak to them as though they are highly knowledgeable about these topics- because they are!- and to express your gratitude for their time. My three favorite staffers we met with were all fellows and had backgrounds in teaching, solar development, and marine biology!

The most valuable part of the training was the breakout sessions with our teams to decide what our specific asks were from each office and who would lead each meeting. Having a specific ask is very important as this is the action step you are hoping to convince your representative to take. The ask varies based on what you think your member of Congress is likely to want to do and what actions they have taken in the past. For members who are less engaged on climate issues asks should revolve around getting them to commit to becoming more involved. For us one of the offices we met with was of a Rep Katko (R-NY-24). We noticed in looking through the committees he was on that he was the only member of the New York delegation not on a specific environmental committee. We chose our ask for that office to be for him to join that committee. In the meeting at that office we spoke to his staffer about environmental issues that are a concern in his district, how climate change can exacerbate them, and how his work in joining this committee could benefit his constituents. For congressional members who are already active on climate issues we first thanked them for being leaders on such a pressing issue and then asked of them to go a bit farther, for instance by giving a floor speech on recent climate publications put out by government scientists such as the Fourth National Climate Assessment, or co-sponsoring a piece of upcoming environmental legislation. For members in our own local districts, we included in our asks invitations for them to come visit our research labs and perhaps do a public event with us to bring light to scientific work on global issues happening in their local districts and policy work they are doing to advance solutions.

Shaina (center right) and other CDI fellows outside of Senator Markey’s office.

On the day of the meetings we donned our business attire and convened on Capitol Hill. Logan and Heather each led two of the four meetings with the NY offices and I led the three meetings with MA offices. First up was Rep. Clark of MA’s 5th congressional district. It went very well and was the perfect meeting to ease us into the day. We met with a staffer who was a fellow with a background in education. She was eager to hear about our work and said Rep. Clark would likely be happy to complete our ask of giving a floor speech. One of the highlights of our day was meeting with Rep. Grace Meng (D-NY-6) who we requested join SEEC, the Sustainable Energy and Environment Coalition, chaired by Rep. Paul Tonko (D-NY-20) which is one of the most active and effective congressional committees on environmental matters. Later in the day we met with Rep. Tonko’s office and they mentioned that they had just received a call from Rep. Meng asking to join his committee! This was a huge win for us as it meant that Rep. Meng had already acted on our ask just an hour or so after meeting with her office. Another highlight of the day was meeting with the Legislative Assistant for Rep. Adriano Espaillat (D-NY-13). He was very interested in connections between social justice and climate change and how to improve the health and wellbeing of the people in his community, while providing them with good jobs, and working to combat climate change all at once. We ended the day at MA Senator Markey’s office where we met with two staffers who were fellows just out of graduate school- one was a marine biologist and the other worked on solar development and sustainability. We had a great conversation on scientists and scientific data that are being used to craft legislation for the Green New Deal.

The two days on Capitol Hill were a whirlwind of meeting new people and learning how scientists and policy makers can work together to make substantive change. If you want to get involved in communicating with your legislators, check with the scientific societies you are a member of to see if they have trainings coming up. You can also reach out on your own to your local legislators and offer your expertise and knowledge for policy work they are currently doing. In addition if you ever find yourself in Washington DC you can also ask for a meeting yourself if you would like to share your science and find ways your work and expertise can benefit their offices. With so much work needed in developing concrete actions that will help implement a global transition to a climate friendly world we will need everyone getting involved and offering to help in any way they can. You have so much to offer, so get out there and start making it happen!