Revising echinoderm relationships based on new fossil interpretations

A re-interpretation of the ambulacral system of Eumorphocystis (Blastozoa, Echinodermata) and its bearing on the evolution of early crinoids

by: Sarah L. Sheffield and Colin D. Sumrall
Summarized by Sarah Sheffield

What data were used? New echinoderm fossils found in Oklahoma, USA, along with other fossil species of echinoderms. The new fossils had unusual features preserved.

Methods: This study used an evolutionary (phylogenetic) analysis of a range of echinoderm species, to determine evolutionary relationships of large groups of echinoderms.

The arms of Eumorphocystis. A. This is an up close image of the arms that branch off the body. B. The arms of Eumorphocystis have three separate pieces comprising them: these three pieces are highlighted in yellow, blue, and green. This arm structure is nearly identical to early crinoid arms, indicating that crinoids might be more closely related to creatures like Eumorphocystis than we previously thought.
Results: Eumorphocystis is a fossil echinoderm (the group that contains sea stars) that belongs to the Blastozoa group within Echinodermata. However, it has unusual features that make it unlike any other known blastozoan: it has arms that extend off of the body, which is something we see in another group of echinoderms, called crinoids. Further, these arms have a very similar type of arrangement to the crinoids: the arms have three distinct pieces to them (see figure). Researchers placed data concerning the features of these arms, and the rest of the fossils’ features, into computer programs and determined likely evolutionary relationships from the data. The results indicate that Eumorphocystis is closely related to crinoids and could indicate that crinoids share common ancestry with blastozoans.

Why is this study important? This study indicates that our understanding of the big relationships within Echinodermata need to be revised. Without an accurate understanding of these evolutionary relationships, we can’t begin to understand how these organisms actually changed through time-what patterns they showed moving across the world, how these organisms responded to climate change through time, or even why these organisms eventually went extinct.

The big picture: This study shows that crinoids could actually belong within Blastozoa, which could change a lot of what we currently understand about the echinoderm tree of life. Overall, this study could help us understand how different body plan evolved in Echinodermata and how these large groups within Echinodermata are actually related to one another. Data from this study can be used in the future to start to understand evolutionary trends in echinoderms.

Citation: Sheffield, S.L., Sumrall, C.D., 2018, A re-interpretation of the ambulacral system of Eumorphocystis (Blastozoa, Echinodermata) and its bearing on the evolution of early crinoids: Palaeontology, p. 1-11. https://doi.org/10.1111/pala.12396

To read more about Diploporitans please click here to read a recent post by Sarah on Palaeontology[online].

Can you dig it?

Rose here –

In the geology gallery at the museum, scientists explore their own research and help visitors better understand the process of fossilization. Photo from @EPS_UTK on Twitter.

At the University of Tennessee in Knoxville, we have a natural history museum on campus called the McClung Museum of Natural History and Culture. Every year they do a family fun day event called Can You Dig It? where scientists from different departments on campus come and set up various activities to engage families. The Earth and Planetary Sciences department always shows up with several fun activities for families and kids of all ages. This year we had quite a few things going on.

Outside we had two tables of planetary activities. One table was talking about volcanoes and how to tell the difference between rocks formed by volcanic eruptions and rocks formed by meteorite impacts. We had real meteorites and impact deposits, as well as some volcanic rocks, so the kids could hold them all and really see the difference.

Other graduate students outside with experiments dealing with impact craters for visitors to explore!

I was at the other planetary table, where we had some more meteorites and 3D-printed models of actual impact craters on the moon and Mars. We used these to explain how the shape of impact craters change depending on the size of a meteorite and the speed at which it impacts. We also had a tub of flour with a thin layer of cocoa powder on top. There were several marbles and small balls, and kids could hold one above the tub and drop it to make their very own impact crater. The layering using cocoa powder allowed us to show them how ejecta blankets work at real impact craters. An ejecta blanket is made of rocks from the impact site being blown up and out of the crater and landing to form a “blanket” surrounding the crater. In the tub, you could see flour on top of the cocoa powder after the impact, showing how buried layers get exposed at the surface surrounding impact craters.

Graduate students have a STEAM (Science, Technology, Engineering, Arts, and Mathematics) for students and visitors to get more information about a variety of topics. Photo from @EPS_UTK on Twitter.

Inside the museum, we had a table where people could bring in rocks or fossils they had collected and geologists or paleontologists would help identify them. This is a really popular thing, and some people bring loads of rocks they’ve been collecting all year.
If you have a local museum, make sure to go check them out. Local museums are often cheap or free and also host fun events like this one!

Last minute opportunities

Jen here –

Recently I was provided with an opportunity to travel across the world, from Tennessee, USA to Nagoya, Japan for the 16th International Echinoderm Conference. When presented with a fully funded trip to an international conference your first answer would normally be, “Yes, of course!” I had not originally planned to go on this trip because I had recently graduated and no longer had access to apply for departmental funds. I had planned other adventures for that weekend, a bit more localized and affordable.

Kōtoku-in in Kamakura where we spent a day exploring temples.

Unfortunately, my mentor and collaborator fell terribly ill the week that he was to travel to Japan and was no longer able to present our most recent work on understanding the taxonomy of blastoids. Being the only other co-author I was faced with a serious question – three days before I would have to leave the country. I am not an impulsive traveler. I like to spend time researching hotels, places to visit, and local historical sites. I like to spend time thinking and processing the whole thing. Having time to conceptualize the trip makes me so much more comfortable traveling.

The first slide of the conference.

I had to quickly weigh the pros and cons and make sure that I still had a valid passport! My initial thought was – no way can I go on this trip. I am one of those people that hates surprises and the thought of having to cancel plans, leave the country, and more in only a few days made me absolutely sick with anxiety. I told Colin, my advisor, that I would need one night to think about it and check to make sure I had valid travel documents. The next morning I decided that this opportunity to network with a global echinoderm community was too precious to not take the trip. I would be able to make new collaborations and rekindle my connection with old friends and colleagues. So, three days after the offer, I was off on a plane to Japan.

Scrumptious echinoid gonads! (the orange stuff)

To say the trip was last minute is an understatement. I was incredibly overwhelmed, had to fix up a talk that I had not prepared, and be away from my family for 10 days. That being said, I am beyond grateful for this last-minute opportunity, especially as a junior scientist that is looking to make new collaborations and network with peers. Also, who doesn’t want to eat echinoid gonads with a bunch of echinoderm workers?! It was an unforgettable experience.

I think the moral of this story is to take these opportunities, no matter how fast and unprepared you may feel. It was a whirlwind of a trip but not only did I learn a lot, I made valuable connections within the echinoderm community that I would otherwise have not made.

Group photo of most of the conference participants.

Skype a Scientist

Rose here –

I recently got to participate in a different kind of outreach activity. Instead of going to a classroom or museum and talking to students in person, I got to share my research with students in a classroom all the way across the country via Skype! I had signed up with an organization called Skype a Scientist earlier this past fall.

I didn’t take any pictures during the session, but here are the rocks I used to answer their question “what are your favorite rocks that you’ve collected?” Clockwise from top left: a conglomerate a friend sent me from California, a jar of Mount St. Helens ash my gramma collected off her car the morning after the eruption, a piece of Columbia River Basalt I collected in undergrad, a gypsum rose from Morocco (my parents bought it in a shop in Oregon), a large quartz crystal my gramma collected in the Mojave desert, a piece of rose quartz I collected in the Sierra Nevada, and a piece of amethyst my roommate brought back from Uruguay.

This organization matches scientists with teachers who would like to have a scientist talk to their classrooms about their research, maybe related to something they’ve studied in class. Because it’s all conducted via Skype, the scientists and classrooms could be anywhere. I live in Knoxville, TN and the 7th grade classroom I connected with is in Seattle, WA. This was fun because I grew up in the greater Seattle area, so I could talk about the local geology. I got to share with them how growing up in the shadow of volcanoes, experiencing earthquakes as a kid, and learning about the glacial ice sheets that used to cover the land where my family now lives all inspired me to love and learn about geology.

My thesis research here in Knoxville has been on the geomorphology of Mars, which was perfect because this class was just finishing up a unit on Mars geomorphology. The teacher contacted me a couple of weeks before we met via Skype. I sent them some info on my research and the students sent back a list of questions they had for me. The topics of these questions ranged from undergrad vs. grad school to questions about Mars to questions about my favorite rocks or field areas. I was really impressed by the thought they put into these questions and the range of things they were interested in. During the Skype session, I started by answering as many of these questions as I could. This took about half the class time, so the teacher and students then had a chance to ask follow-up questions. The students were very engaged and interested in what I was saying. I was a little nervous beforehand that I wouldn’t be able to answer their questions or the technology would fail on us, but it went really well and we all agreed it would be fun to do again. If you are a teacher or scientist I would totally recommend checking it out!

If you are interested in signing your class up, or a researcher interested in talking to a classroom, you can sign up for Skype a Scientist here!

Exploring St. Augustine, Florida

Jen here –

Outside of the Castillo de San Marcos along the beach. It’s quite an impressive and old structure!
I was recently one of fifteen participants in a workshop. Most participants in this workshop are graduate students or recent graduates studying paleontology or biology. The workshop is a month long with very few days off. We had one two day weekend and decided it would be fun to be tourists and go to St. Augustine! St. Augustine is a very old city that is on the eastern coast of Florida and is home to Castillo de San Marcos National Monument.

a close up of my hand next to the coquina that was molded into a pillar. Abby next to that same pillar for a better scale! Most of the rock used for the buildings was coquina!
We were incredibly excited to realize that much of the local stone work was sourced from local rock. This rock is called coquina. Coquina is a sedimentary rock that is made up of shell fragments! The coquina is from the Anastasia Formation that was deposited in the Late Pleistocene (around 2.5 to 0.012 million years ago). We spent a lot of time with our faces pressed into walls looking at what shelly creatures were preserved in the wall. The National Park Service has a nice write up explaining how creating the fort out of coquina was incredibly beneficial, click here to read more. Essentially, the rock did not break when the opposing forces began firing weapons and at the fort. Instead, the rock absorbed the shock and compressed when hit with cannon fire!

A group of scientists examining one of the coquina walls. This one was absolutely filled with nice sized oysters.
We spent time exploring the fort, which had an amazing amount of rooms with some extraordinary details preserved. When I say the entire fort was made of coquina, I mean the entire thing. It was one of the most incredible things I have ever seen! There were rooms with barrel vaulted ceilings, tall arch like ceilings, some with carvings in the walls, and much more.

Underneath the boardwalk at the St. Augustine beach. These pillars were filled with organisms that stick on other things for most of their lives.
After visiting the fort we spent time around the city exploring and being tourists. Then we decided to venture out to the beach. Remember, paleontologists study ancient life. This means many of us have training in biological sciences and get really excited about animal life! We got to the beach and some people hopped right into the water while others sat on the beach and read or took a walk along the beach. May and I decided to walk along the beach and we eventually came to these large pillars supporting a boardwalk.

A close up of some of the barnacles with my finger for scale! Some of them were quite large!
These pillars were completely covered in sea creatures! Mostly oysters, other small clams, snails, and barnacles! Most notably were the large barnacles that were a beautiful pink/purple color! Barnacles are related to crabs and lobsters but look so very different. It is absolutely astounding that these creatures can be cemented to the pillars and live for periods during high tide. Not all of the animals were still alive that were on the pillars, especially those that were quite high up.

This is a great example of how we can better explore the world around us through the lens of different sciences! Geology that contain biological remains and lots of living organisms on the beach!

Florida Association of Science Teachers

Jen here –

Here is a flyer from our workshop with the information for the institute that I am part of.

Part of my new job is as a postdoctoral associate at a newly developed institute: Thompson Institute for Earth Systems. This institute has a primary goal of helping translate the complex science done at the University of Florida as it relates to Floridians. This includes anything related to the environment and the primary Earth systems (life, land, water, air). Recently, the institute was awarded a large grant to pursue a project to get scientists into Florida classrooms. To help promote and share content we hosted a workshop at the annual Florida Association of Science Teachers (FAST).

My supervisor had submitted the proposal for this workshop but was also giving a lecture the day before on the larger project and suggested I run the workshop instead. The idea was to give a brief but useful content overview to the educators and then allow time for lesson plan development and questions. This was a surprisingly daunting task: I’m used to giving quick research talks on a very specific topic and here I was tasked with describing how global processes can affect Floridians.

Simplified diagram to show the processes of weathering and erosion. One of the major limiting nutrients is phosphorus, which is held within the rocks!

It took me an incredibly long amount of time to decide how I wanted to structure the talk. A colleague had suggested we play BINGO during the talk. I made BINGO cards for the teachers with terms that I would use during the content portion of the workshop. If someone got BINGO they would have to share the terms and describe how they are interconnected. One of the key points of the workshop was to exhibit how interconnected all of the spheres really are. The talk began with a direct issue here in Florida – sea level rise. NOAA has a sea level rise viewer where you can simulate what happens in a specific area when sea level rises. So I zoomed in to the area directly around where the conference was in Miami, Florida. The simulator starts at 0 and goes up to 6 feet, and unfortunately the average elevation in Florida is only just above 6 feet. I then walked the educators through the four basic spheres of Earth system and how we can visualize them here in Florida. This included how sea level rises, ocean circulation, erosion and weathering, cave and sinkhole (karst) features, greenhouse gases, and more!

The next portion of the workshop was designated to allow the teachers time to brainstorm ideas for a lesson or activity and to ask questions to content experts (the rest of our lab group and team was there in the room). There were some really great activities thought out and we were able to discuss ideas with the teachers for how we can better serve them as an academic institute. Overall, it was a great experience for me to share more information about Earth’s natural systems and foster discussions with educators.

National Fossil Day at the Florida Museum

Jen here –

Our tables are the first two on the right! It was never jam packed but there were over 1700 visitors to the museum in 5 hours!

National Fossil Day is a holiday enacted in 2010 to celebrate prehistoric life. Each year museums, institutes, and organizations plan events around understanding geology, paleontology, and Earth’s history! This year, I helped plan activities for the FOSSIL project and the department of vertebrate paleontology at the Florida Museum of Natural History. The annual event has all the natural history departments and several local organizations set up as a knowledge fair. Adults and children can wander around to different tables to learn about Florida’s different animals, plants, and more!

View of the visitors at the museum for National Fossil day!

At the FOSSIL project table, we displayed real megalodon teeth, 3D printed teeth made of plastic, and digital teeth! On the myFOSSIL website you can look through a 3D gallery (click here) and move digital fossils around in your browser. We also had an app up that was developed by the iDigFossils group to estimate body size of the sharks based on their teeth! It was really fun and helped show the utility of the website!

A close up of my sticker! #NotADinosaur! My synapsid kin!

The vertebrate paleontology table had a modern turtle shell next to ancient fossil turtle pieces! The idea was you could select a piece of shell material and try to figure out where on the turtle shell the piece was fun. This was difficult with some pieces but others were very clearly the edge of the shell or contained ribs. As many of you may know, I am not a vertebrate paleontologist so I had to quickly learn as much as I could about turtles. Shout out to my friend Jeanette for teaching me how to identify turtle shell fragments the week before the event. Many of these turtle pieces were about 5 million years old and from areas around Florida! We also had a few jaws for people to look at different teeth and then play a matching game. The game had you match different animals and teeth, then we talked with the players about diet and how we can use differently shaped teeth to think about what food the animal was eating.

The entrance to the new Permian Monsters exhibit at the Florida Museum of Natural History.

I helped out at the two tables inside but outside we had a dig pit and wash pit stations. So one was where you would dig through sand to find different fossils and the other was where you would use a screen to sieve through material to find smaller fossils!

We had our National Fossil Day celebrations a bit early to coincide with the opening of a new exhibit, ‘Permian Monsters’. The Permian period is incredibly interesting because it was before dinosaurs when mammals were dominant and roaming the Earth. I was asked to be on the radio to describe the differences between dinosaurs and mammals in less than 30 seconds! At first I was thinking… what the heck am I going to say to these people but then I knew: ‘The major difference between these early mammals and dinosaurs is the amount of holes in their heads.’ The radio host lost his mind and then asked me a million questions after we were off air.

Right in the front door of the Permian Monsters exhibit was a giant eurypterid. I immediately requested a photo.

This was my first National Fossil Day at a new institution and I had a lot of fun! I hope everyone got to celebrate and share their love and knowledge for fossils!

Grand Canyon Trip

Rose here –

Standing on a rock at Ooh Aah Point, about a mile down the South Kaibab Rim Trail.
A year ago I got the chance to visit the Grand Canyon National Park. I had been there once as a toddler, but of course I didn’t remember it, so I was very excited to have the opportunity to go again now, especially since I’ve been studying geology for a few years. The Grand Canyon is like Disneyland for geologists. There are SO many cool geologic processes and so much geologic time represented there (click here for a fun read on the geology).

Hiking down the South Kaibab Rim Trail and looking back up at the South Rim.
We were staying in Flagstaff, AZ for a conference, but my colleague and I had a free day before it started and since the Grand Canyon is only an hour and a half away we decided to just hop in the car and go. We started off early in the morning so we could try and beat the heat. When we arrived we headed straight to the rim.
It was one of the most exciting moments of my life. I had seen pictures of the canyon, but nothing prepared me for what it was actually like to stand there in person. We walked up to the rim with our eyes on the ground so we would see it all at once. When we got close enough we looked up and were utterly speechless for at least a minute. It was so worth it. The Grand Canyon is so big. Like, SO BIG. Apart from all the cool geology, it is a really amazing view.

Sitting near the edge by the Geology Museum (I was further back than it looks!).
One of the coolest things about the Grand Canyon (besides the size) is how you can really see textbook examples of geologic concepts displayed in a way that anyone can see. For example, the Great Unconformity is a famous example of an unconformity – a place where rocks were deposited or uplifted and then some time passed and/or erosion occurred before more rocks were deposited. The Great Unconformity is the place where the beautiful sedimentary rock layers that make up most of the Grand Canyon are deposited on top of older metamorphic and igneous rocks. The distinct sedimentary rocks layers we see exposed in the canyon help geologists understand what the environment was like at different times in the past. After all these rocks were deposited, the canyon itself was carved out by the Colorado River starting at least 6 million years ago (click here for more information), resulting in the Grand Canyon we see today.

A note from the editor (Jen): I wholeheartedly agree with this description, the view is beyond breathtaking. It takes a while to soak in the awe inspiring beauty. Time is so often taken for granted but when you can see so much time in the rocks, it gives you a new perspective.

A view of the Grand Canyon from near the visitor’s center, looking north from the South Rim.
Me standing at the South Rim, with Bright Angel canyon behind me.

Excursions with Tennessee’s Governor’s School

Maggie here-

This past June, I helped teach biology, with a focus on vertebrate evolution, with Tennessee’s Governor’s School, a program for high school students to come and experience college life for a month. Last year, Time Scavenger mastermind, Jen, wrote a post about what Governor’s School is, so I’m going to focus on the field trips that we went on!

Figure 1: Here we all are out in front of the entrance to the Gray Fossil Site! In addition to having a lot of information about the fossil site itself, there is a very hands-on science museum at the site.

Field trips are a really important part of learning about science, but can also be really valuable in showing young students what careers are available to scientists. Most students understand that scientists have all kinds of different research interests and biologists don’t spend their days rehashing high school biology curriculum, but it can be hard to imagine what else you would do with a degree in biology without seeing it in action. So, to show our students what all biology encompasses, we went on four field trips this year to the Gray Fossil Site, Oak Ridge National Lab, ProNova, and fossil collecting in east Tennessee!

Our first field trip was to the Gray Fossil Site, a Miocene (4.9-4.7 million years ago) fossil assemblage. This site is really cool because it is a lot younger than most fossil sites in east Tennessee and they have a plethora of vertebrate fossils preserved there. They have found everything from tapirs (similar in look to a pig) to alligators, mammoths, and even a new species of red panda! We unfortunately went on the paleontologist’s day off, so we didn’t see anyone actively working at the site, but we could see the pit that is being excavated this summer as well as peek into the preparation labs to see which fossils are currently being cleaned and put back together. After our tour we had some time to explore the museum that is a part of the Gray Fossil Site which does a good job of explaining what the preserved environment is like, how the site itself was discovered, and what the roles are of the scientists involved at this site.

Figure 2: An image from ProNova’s website showing how protons can more directly target a tumor when compared to radiation therapy. By more directly targeting a tumor, the patients risk of developing complications (including different cancer later on) from healthy tissue being exposed to high levels of radiation, decrease dramatically.

The second field trip that we went on was to Oak Ridge National Lab. We are super lucky living in Knoxville that we have a national lab ~40 minutes away that is welcoming to visiting groups! Since we were talking about biology, our main tour was in the biofuels (fuel derived from living matter) lab. There we discussed the major setbacks to biofuels (large land areas needed to grow plant matter to turn into biofuels, making sure that the carbon footprint of the growing and production of biofuels was also lessened, etc.) and how scientists at Oak Ridge are trying to solve these problems to make biofuels more readily accessible for large-scale use. In addition to biofuels, we met with other scientists and talked about big data and the computing power of the supercomputers housed at Oak Ridge. There’s nothing like talking about supercomputers and all that they can to do to get a bunch of science nerds buzzing!

Our third field trip was to ProNova, a facility that is using proton therapy to fight cancer. This field trip was particularly exciting to our students because many of them want to go into the medical fields, but was also a great learning experience for me! Using protons to treat cancers is a relatively new treatment, so none of us had any idea of what to expect, or what we were going to learn. At ProNova, they use large electromagnets to generate a beam of protons that can be directed to target tumors and that beam has more control than radiation, so only the tumor is being “attacked” by the protons, not the tumor + healthy tissue. The coolest part of this field trip was being able to go behind the scenes and see the magnets and resulting beamline that then is directed into treatment rooms and eventually into patients!

Figure 3: Left: One of the receptaculites specimens that was found while we were fossil collecting. You can see in the image on the right how similar they look to the center of a sunflower!

Our final field trip was to go fossil collecting in east Tennessee. While we weren’t collecting vertebrate fossils (east Tennessee is chock full of lovely invertebrate fossils-I might be a little biased in calling them lovely!), many of our students grew to appreciate paleontology over the month-long course and were excited to be able to collect their own fossils to bring home. Most everyone found crinoid stems, receptaculitids (an algae that looks a lot like the center of a sunflower), and bryozoans (small colonial organisms). We also stopped to look at a wall that was made almost entirely of trace fossils!

While we spent a lot of time in the classroom discussing vertebrate evolution and all of the different aspects of science that play a role in understanding how life and humans evolved, our field trips provided our students with real world applications for the science that they were learning. And from my perspective, the field trips were a way to get ideas of how to present this kind of material in my classroom, as well as to collect current research examples to help answer questions of why biology and vertebrate evolution are important to our understanding of the world! Governor’s school is a really intense month for both the students and the teachers, but the field trips gave us all a chance to connect and have candid conversations about science. It also gave me a chance to reflect on the field trips I took as a young scientist, and how they shaped my desire to become a scientist–so remember, field trips may appear on the surface to be just fun and games, but are incredibly important to the learning process!

Sadie Mills, Environmental Educator and Museum Project Coordinator

Using Ollie, a non-releasable Eastern Screech Owl, to teach students about bird adaptations at the Rock Eagle 4-H center near Eatonton, Georgia.

My curiosity about the natural world started on family camping trips. One regular destination was the shores of the Sea or Cortez, where the extreme tidal range (up to 9m!) produced incredible tide pools full of stingrays, octopi, brittle stars, and more. My fascination with nature and true love of being outside eventually led me to pursue job opportunities (and later a master’s degree) in environmental education. Environmental education aims to help people understand, appreciate, and think critically about their interactions with all aspects of the natural world. This can be accomplished through outdoor experiences, laboratory activities, live animal encounters, and more. My work days have included leading students on forest hikes, taking families seining at the beach, and educating public visitors at rehabilitated sea turtle releases. While many of these experiences are short-lived, they often spark enduring curiosity, positive feelings about nature, and sometimes positive behavior change among participants. Not every interaction makes a difference, but when they do the results can be quite powerful.

Tide-pooling at Puerto Peñasco (Sonora, Mexico), one of the places that got me hooked on nature. (Tragically, the 101 Dalmatians sweater is too blurry to properly appreciate.)

To remain effective, environmental education must adapt to our changing world, and in the 21st century this means branching out into virtual education. In my current position as coordinator for the FOSSIL Project, I get the opportunity to engage with audiences through online interactions on social media and our website (www.myfossil.org). FOSSIL (Fostering Opportunities for Synergistic STEM with Informal Learners) is an NSF-funded initiative that supports a community of amateur (avocational) and professional paleontologists with the goal of shared learning. Utilizing online platforms has allowed us to build a diverse and widespread community of learners, but also a community of educators. Each of our participants brings knowledge to the table, and the online space makes it easy and comfortable for them to share their experiences. This fall, we hope to further expand our community with the introduction of an accompanying mobile app. This tool will allow users to document and share their paleontological experiences directly from the field. I never thought I would contribute to an app, but I am now so excited to see the learning opportunities that will result from this new technology.

Teaching students to seine for surf-zone fishes and invertebrates on Tybee Island, Georgia.

One of the great joys of working as an environmental educator is seeing how excited people get when they learn something new, especially people who may be discovering their passion for science for the first time. For those thinking about a future in science, I hope you will consider the many career paths available to you. If you like technology or inventing, you can help develop the tools scientists use to make new discoveries. If your passion is writing, you can pursue science journalism or help edit science publications. You can conduct investigations as a researcher, teach others as a formal or informal science educator, pursue art as a science illustrator, or help shape policy as an environmental lawyer. In its own way, each job makes an important contribution to science, and society needs curious science enthusiasts in many different roles!