Amherst Elementary Science Night!

Solveig at the fossil table. Here, she is telling kids and parents about whale baleens. Visible on the table is a walrus vertebrae and a piece of a whale vertebrae (the large, plate-sized fossil).

Adriane here-

Recently, I participated in the first-ever Amherst Elementary Science Night. This event, held at one of the local middle schools in Amherst, Massachusetts, was designed to introduce elementary-aged children to the different areas of science. Several professors, graduate, and undergraduate students  from the University of Massachusetts Amherst attended to help out with fun activities for the kids! Several professors and students from our department also attended to teach the kids about aspects of geology. Of course, I was there to tell anyone who would listen about the wonderful world of paleontology and showcase different fossils.

The event was held in the cafeteria space of the middle school, which was divided into two areas. The first area included tables with activities and fun science stuff for the younger kids. The second area was for older kids, with more advanced science activities. Altogether, there were eight of us from the geology department who attended, with three of us (me, Solveig, and our advisor, Mark) who were in the younger section with a table full of fossils!

Helen working with kids at the core table. In front of her is an image of a sediment core.

At our fossil table, we brought specimens from the three major time periods: the Paleozoic to show people what early life looked like, the Mesozoic (or time when the dinosaurs were alive), and the Cenozoic (the time after the dinosaurs went extinct to today). Some of the awesome fossils we brought along were stromatolites (fossil cyanobacteria), brachiopods, a piece of a Triceratops dinosaur bone,  a ~350 million year old coral fossil, coprolite (fossil poop), a mammoth tooth, whale ear bone, a piece of whale baleen, and a modern coral (to compare to the fossil coral). Of course all the kids wanted to touch the dinosaur bone, and the mammoth tooth is always a big hit! But my favorite part of the night was asking kids what they thought the coprolite was. Most didn’t know, whereas other kids would throw out a guess. When I told them it was fossil poop, almost all immediately started giggling, and some even made some really funny faces! It was great fun!

In the second room, two of our UMass Geoscience professors (Bill and Julie) and three other graduate students (Helen, Hanna, and Justin) ran two other tables. Julie and Helen did an activity in which they taught kids about sediment lake cores, and the different types of sediment layers in cores that can be used to interpret Earth’s ancient climates. To do this, they rolled different-colored Play-Doh into thin layers and stacked them into bowls. The different colors represented different sediment layers on the seafloor or lake bed. The kids then took their own ‘cores’ from the Play-Doh using segments of clear plastic straws! Helen and Julie also had images of real sediment cores laid out on the tables so the kids could see what these look like.

Justin (foreground) and Bill (background) at the sandbox.

Next to Julie and Helen’s table was Bill, Hanna, and Justin. They brought along our sandbox, which we use in our classes to illustrate how faults are made. The sandbox is a bit more complex than it sounds: the box is wooden, with clear plastic sides. One side of the box has a hand crank, which will push the side of the box towards the other, thus pushing the sand in front of it. The sandbox is meant to demonstrate plate tectonics, specifically what happens when one tectonic plate moves towards another. The sand represents the upper layer of our Earth’s crust. To begin, we fill the sandbox with a neutral-colored sand, then add a thin layer of blue sand, another thin layer of neutral sand, and a second layer of blue sand. Then, when we crank the handle and the sand is pushed, it creates tiny ‘faults’ that can be seen in the sand layers. This is always a fun activity for the kids (and our students!), and is a great way to communicate how an otherwise complicated geologic phenomenon occurs.

The event only lasted about two hours, but we all interacted with several kids, their siblings, and parents! Doing outreach activities like this is always fun, and reminds me of when I was younger and excited about the natural sciences. For us scientists who do a lot of serious work, events like these are important reminders of why we love doing what we do, and share that passion with others around us.

 

Caroline Ladlow, Sedimentologist

Caroline holding a field notebook with coring equipment in front of her in Iona Marsh, Hudson River NY.

What is your favorite aspect about being a scientist, and how did you become interested in science?

At the beginning of college one of my professor’s suggested that I take an introduction to geology course, and within a few weeks I was hooked! Before that, I had no idea that geology and earth science was a subject that people studied. But I was hooked on the idea that my classes were teaching me more about the world around me- and I still am! I love studying subjects that directly affect people and communities, so now I research historical hurricanes and different types of flooding.

What do you do?

An issue that comes up more often in the news is the frequency of intense hurricanes. These storms impact huge numbers of people along coastlines all over the earth; now we worry that these big storms might be happening more often or might be getting stronger. However, we do not have long historical records around the world of how often these storms used to happen. The really cool thing about geology is that we can look further back in time using things that nature leaves behind. I go to lakes and marshes near the coast to collect sediment- we take a big empty tube and stick it into the earth to learn about big floods that have happened in the past. It works kind of like sticking a straw into your drink and putting your thumb on top, except we do this with mud and sand. When we look at the layers in the mud, the deeper down we go is further in the past, like the pages in a book. Layers of sand tell us that a big storm happened there in the past, pushed into the lake by huge storm waves that bring sand in toward land from the ocean and beach. Counting how many of these sand layers there are helps us understand the frequency of storms through history. Knowing more about the past can help us understand how to help prepare for these storms, help protect coastal populations, and whether they are happening more frequently now.

How does your research contribute to the understanding of climate change?

Most of the global population lives within 60 miles of the coast, so studying storms and coastal flooding is really important. Boston, MA is one of many cities globally that is along the coast and vulnerable to coastal flooding, especially with the additional threat of sea level rise. Each year during hurricane and nor’easter seasons we are repeatedly reminded of the threat that these storms pose to the coastal populations of the eastern United States, not to mention other parts of the globe. The more we can constrain the frequency and strength of storms, the better we can serve and protect the people of Earth from these huge floods. I am motivated not only to be active in the research I do studying coastal flooding, but also to play a role in disseminating knowledge to public and policy spheres. The research I am involved in can help inform hurricane and nor’easter preparedness for populations all along the coasts, helping decide where structures will get built and how storm water management and adaptations plans are designed.

Showing and describing sediment cores and clay samples to our project stakeholders at an annual meeting (photo credit Jon Woodruff).

What are your data, and how do you obtain them?

Most of the data that I use comes directly from sediment, either at the bottom of lakes or on wetlands and marshes. As it builds up over time at the bottom of lakes, we can look down into the mud and read a history through the different grain sizes from sand to mud, the types of animals that lived there, and the types of materials that make up the sediment!

How do you engage with the science community and with the public?

I recently got to participate in the AGU Voice for Science program- an incredible opportunity to learn more about science communication and meet other scientists interested in outreach. The American Geophysical Union (AGU) is the largest society of earth and space scientists around the world, and they have some very cool opportunities for outreach and science communication training. So far, my outreach experience has mostly been in educational programs to get children interested in science. This program through AGU broadened my experience in science communication into policy, and we got to do congressional visits to talk to Senators and Representatives from various states about science funding. I think a really critical aspect of outreach is building relationships with the communities you want to impact and making yourself available for their questions and concerns. We often approach outreach with the attitude that we have expertise about a specific issue to offer people, but they may be interested in an entirely different subject. Asking a community what their interests and questions are before you go in with your own is a really valuable way to build trust and a strong working relationship for future research and outreach. I am excited to see how my outreach will change in the coming months after learning so much from this workshop!

What advice do you have for aspiring scientists?

Pursue your goals, even if they seem out of reach or even impossible. And never hesitate to ask others for help and advice!

 

Benjamin Keisling, Gaciologist and Paleoclimatologist

Benjamin examining a sediment core drilled from Antarctica during an expedition in January 2018. Photo by Bill Crawford, IODP.

What is your favorite part about being a scientist, and how did you become interested in science?

I got interested in science because I loved nature videos as a kid. I specifically remember one about the Alvin exploring the deep ocean that I would watch over and over, and I thought that being a scientist must be the coolest thing in the world. After that, I had a series of passionate and supportive teachers and mentors that nourished my interest in science and equipped me with the tools I needed to pursue a career in it.

There are a lot of things I love about being a scientist, but I think my favorite is the opportunities science has given me to meet people from different backgrounds. I have a network of peers, collaborators and mentors all around the world and I have learned so much, both as a scientist and a human being, from all of them.

What do you do as a scientist?

I study glaciers and ice sheets, the huge masses of ice that exist today in Greenland and Antarctica. I’m interested in how they responded to climate change in the past, so that we can better predict how they will respond to climate change in the future. This is particularly important today, because the ice sheets are melting at an accelerating rate and causing sea level to rise along coastlines around the world. To do this, I run computer model simulations of earth’s climate and ice sheets and compare the results with geologic data. I use these comparisons to understand what caused past changes to the ice sheets (for example, atmospheric or oceanic warming) and make predictions of how much sea level rise occurred during past warm periods.

Benjamin working on creating models while on the research vessel JOIDES Resolution. Photo by Mark Leckie.

How does your research contribute to the understanding of climate change?

My research helps us understand the stability of ice sheets as the climate warms, which is one way we can improve predictions of sea level rise in the coming decades.

What are your data, and where do they come from?

For my research, I work with a lot of continuous climate records derived from ice cores and marine cores, which has been a great way to learn about those archives and given me some amazing opportunities to get involved with fieldwork. If you want to read more about that, you can find information on my blog

Another part of my work that I am passionate about is making science more equitable. In many ways throughout history, scientific discourse has been dominated by some voices at the expense of others. In the U.S. today this is exemplified by the over-representation of white men as professors, in leadership positions, and as award recipients. This hinders scientific progress and is harmful to our community. Science advances by testing new ideas and hypotheses, which is inefficient when not everyone is invited to the table to share their ideas. Unfortunately stereotypes, discrimination, and harmful working conditions (among other factors) have kept many brilliant people from pursuing scientific careers, and especially academic ones.

At UMass, I have been working with a group of graduate students to address this through BRIDGEBRIDGE is a program that encourages departments to identify and invite Scholars from underrepresented backgrounds in STEM who are early in their careers to participate in an existing departmental lecture series. We also ensure that we provide the Scholar with a platform to share their personal experiences with obstacles and opportunities in entering and remaining in academia, so that current graduate students are better equipped to navigate that process. This is a small but meaningful way to make sure that all scientists feel like they have role models who have had experiences they can relate to, and we have found that many graduate students do really benefit from it.

Three penguins watch the JOIDES Resolution drill ship from a large piece of sea ice. Benjamin sailed on this expedition to the Ross Sea in early 2018 (Credit: Gary Acton & IODP).

What advice do you have for aspiring scientists?

If you want to be a scientists then you should already start thinking of yourself as a scientist. The sooner you start experimenting with that identity and what it means to you, the better prepared you’ll be for actually doing science. I remember the first time I started meeting the “real scientists” whose papers I had obsessed over as an undergraduate. The idea of meeting these big names was overwhelming and intimidating and I doubted that I could ever occupy the same profession as them. Looking back at that almost ten years later, it’s clear to me that was a false distinction that only served to hold me back.

Being a scientist starts with being curious or interested in something and simply asking questions about it. How does it work? What happens if I do this? If you are asking those questions about anything, then you’re already thinking like a scientist, and you can do anything that a scientist can do. Some of those things that a scientist does are more exciting than others (doing experiments and taking measurements compared to writing grants, for example) but my advice would be to try all of it. Writing grants based on your own ideas is scary because there’s a potential for rejection, but it’s extremely important to try, and there’s no end to what you can learn through that process. It’s taken me a long time to understand that rejection of one of my ideas isn’t a rejection of my worth as a scientist; and conversely, when you apply for a grant or scholarship and you do get it, there’s an incredible feeling of validation and support.

So I would say get started as early as possible looking for opportunities to get rejected. Apply for everything you can. A lot of things won’t come through, and you have to learn to accept that. But other things will, and getting that recognition will not only be good for your self, it will pave the way for other opportunities and lead you to new research questions. And if you’re ever intimidated by an application, don’t be afraid to reach out to people who have been there before – more often than not we are willing to support you through the process.

Plankton Photo Shoot

The SEM I use to take images of my foraminifera. The open part is looking into the chamber, which becomes a vacuum when the machine is on and running.

Adriane here-

I do a lot of research for my PhD, and some of that research is painstaking and tedious. But some aspects of research are just downright fun! Today I’m going to talk about one of my favorite parts of my research: taking very high-resolution and close-up images of my fossil plankton, foraminifera!

Because the fossils I work with are so small (about the size of a grain of sand), we need a very unique system to take high-quality and close-up images of them. To do this, people who take images of microfossils use scanning electron microscopes, or SEM for short. An SEM uses electrons reflected off the surface of the fossils to create an image. To do this, the interior of the SEM is a vacuum, and the fossils need to be coated with a conductive material. At our university, we use platinum to coat our fossils.

A close-up image of the stub. This is after the slide was coated in platinum, thus the reason why everything looks dark grey. The copper tape at the top of the image helps to reduce charging and increase conductivity within the SEM.

The first thing I do before I can take images of my fossils is to pick out specimens that I want to photograph. These are then placed onto a small, round piece of double-sided sticky tape. The fossils are so tiny, I can fit tens onto one small piece. This sticky piece is then placed onto a glass slide. We call the fossils, tape, and glass a ‘stub’. Once all the fossils are in place, I then put the stub into a coating machine. This machine coats all the fossils with a very thin layer of platinum while in the presence of xenon gas. The entire process is very quick (about 30 minutes at most). Once the specimens are coated, they’re ready for imaging in the SEM!

The stub mounted to the stage inside the SEM.

The SEM itself is a rather large contraption, but incredibly amazing! The entire machine is operated from a computer that sits on a desk beside the SEM, so everything is pretty self-contained and right there. The first thing I do after coating is to mount the stub on the stage within the SEM. This is simple: it involves taping the stub to a metal piece, which in turn fits snugly onto the stage element of the SEM.

Once in place, I then slide the door to the SEM shut and vent the machine. Venting means I push a button on the computer, which tells the machine to begin creating a vacuum inside its chamber. This process takes about ten minutes or so.

Here, I’m  focusing on a smaller spot on the image.

After the chamber inside the SEM is under vacuum, I can then begin the process of photographing my fossils! Everything from this point forward is operated using software on a desktop computer that talks to the SEM. Just like a camera, the images have to be focused before taking the actual picture. This can be either very easy, or very tedious. There are several factors to determining how the image looks on the screen: are the levels balanced, is there charging on the fossils that’s causing a disturbance, the distance of the stub fro’m the camera, etc. There are controls on the computer program that allow the user to make changes and adjustments as necessary.

An image of one of the whole foraminifera shells. This image was taken at 198 times magnification. Remember, these shells are the size of a grain of sand, so the SEM really allows us to see all the beautiful details of the shells!

I find that the best way to focus the image is to zoom in very close to the fossil I want to photography. In this case, ‘very close’ means zooming in more than 2,000 times or more, so I’m really getting up close and personal with the fossils! I use a technique where I select a small window of the entire image, and use the tools in the program to tweak and focus the image in that smaller box. This is a faster way to focus, and when I’m happy with the results, I can apply the changes made to the small area to the entire image.

Once the settings are adjusted and correct for my fossils, I can then get through taking images pretty quickly! Each image includes a scale bar to indicate the size of the fossil and the magnification, which is helpful and necessary to include with each fossil picture. For this project, I was very interested in taking close-up images of the surface of my specimens, and also taking a side-view of the shells (quite unfortunately, this means I had to break open some foraminifera shells once placed on the stub and before coating).

This is looking at a broken piece of a foraminifera shell! Those tiny holes are where it’s spines used to be when the plankton was alive and floating in the water column.

Once all the images are taken, I can then download them onto a thumb drive  and work with them on my own computer. This involves using other photography programs such as Adobe Photoshop to crop the fossil images and place them onto a black background.

Although the process of taking SEM images of fossils is incredibly fun, it’s also vastly important for research. I will include images of all my fossils in a publication. This way, other researchers will know how I tell one species apart from another, and the different characteristics of each plankton species. Ideally, I’ll have pages and pages of fossil images, called plates, included with my publications!

 

 

 

 

Chris Lowery, Research Associate & Paleoceanographer

Chris by a multicorer (a machine that sits on the seafloor and collects several short sediment cores) on the R/V Thomas Thompson during a cruise in the California Borderlands. Photo by Robyn Von Swank.

I am a paleoceanographer. Basically, I study how the ocean changed in the past, in order to understand how it might change in the future. To do this, I primarily use foraminifera, which are sand-sized plankton that have a hard shell that is easily preserved in ancient sediments. In fact, in many places far from land the sea floor is entirely made of foraminifera and other microfossils (fossils so tiny, you need a microscope to see them properly or at all). To get the microfossils, I often go in the field or to sea. I do a lot of work with core samples of both ancient and modern sediments from the deep sea and on the continental shelf, and also collect samples from outcrop on land where the sea used to be.

My research touches on a number of societally relevant topics, although if I’m honest my main motivation is just to better understand how the world works. I like when my work addresses specific problems like declining oxygen in the oceans, but there is value in all kinds of science, and you never know what discoveries might lead to an important insight into processes that are significant today. That being said, much of my work focuses on how anoxia (i.e., no dissolved oxygen in the water) develops in the ocean, and how marine life responded to it in the past.

A combination of warming water due to climate change and plankton blooms due to increased nutrient runoff from agriculture on land has led to a recent decline in the amount of oxygen in the oceans. In turn, this had led to an expansion of deadzones (places in the ocean where marine life cannot live) on continental shelves and in bays and estuaries. The modern ocean is losing oxygen at a similar rate to the just before major anoxic events in the Cretaceous Period about 90 million years ago.  These past oceanic anoxic events are useful partial analogs to understand deoxygenation in our oceans and its effect on marine life (the short version is it drives a lot of extinction).

Original painting by John Maisano illustrating the recovery of life, specifically foraminifera, after the K-Pg mass extinction event. This event was described in Chris’ paper that detailed the recovery of marine life after the extinction event.

I also study how life recovers after major mass extinction events, particularly the End Cretaceous mass extinction that killed the dinosaurs and 75% of life on Earth. That mass extinction was caused by an asteroid impact in the Gulf of Mexico. The impact caused particles to fly into the atmosphere, blocking the sun. Because of this, photosynthesis crashed, and everything went extinct in just a few years. This is probably the only major event in Earth history that happened faster than modern climate change, so it’s a useful analog to understand how ecosystems rebound after a rapid extinction event. We are not (yet) experiencing a sixth mass extinction today, but rates of extinction are undeniably high because of human activity. How the biosphere (the plants, animals, and various other life forms on Earth) will recovery once human disruption finally stops is an important thing to understand. Unfortunately, results from the past suggest that life will take millions of years to bounce back.

The best part of being a scientist, in my opinion, is working to solve problems that I find interesting (this is my main advice to aspiring scientists, too, find something that you think is interesting and that will hold your attention. There are lots of important things we don’t know and you don’t have to pick the highest profile one). The other best part of being a scientist is the opportunity to work in the field and go to sea and work with friends from all over the world to solve a problem. I got into geology because I wanted a job where I could be outside at least part of the time, but the chances to travel have surpassed all of my expectations.

Chris is currently a Research Associate at the University of Texas Institute for Geophysics. He was a member of a drilling expedition that recovered a core from the Chicxulub crater, where the asteroid that killed the dinosaurs hit. Chris and his team were featured in the NOVA documentary ‘Day the Dinosaurs Died’, which is freely available online here. To learn more about Chris and his science, you can follow him on Twitter @clowery806.

Beyond the Science: Considerations when Picking an Academic Post

Susanna and Andy here-

Academia is complicated. Each position has complicating factors that are unrelated to the work you’ll do, or who you’ll do it with. Considering the money and benefits are important. Here’s a discussion of some of the things that we have had to consider as we’ve moved around the world. Andy is currently a Postdoctoral Research Associate at the University of Bristol, Susanna is his very supportive and wonderful wife who’s been dragged all around the United States, and now world.

Susanna: I didn’t know what the life of an academic looked like. I’m not sure Andy did either, when we first got together, but the things listed here certainly affected us both.

Funding is not guaranteed for an advanced degree.

Susanna: There are different benefit scenarios which might be offered to someone applying for a Masters or Ph.D. program. My husband’s Masters program offered him a Research Assistant (RA) position, which basically meant he was paid to do his work. For his Ph.D., he was offered two years of funding as a Teaching Assistant (TA), which paid our living expenses, but it meant he had to spend time for teaching first before attending to his own research work.

Andy: Though I did get teaching experience, which helped build my CV. That’s something I actively pursued, even at the expense of money/research time.

Susanna: After the two years ran out, we were fortunate that his advisor helped provide opportunities for grants, fellowships, or other ways to stay in the program.

Andy: This can be a good thing also, to be finding grants as a PhD student, as once out of a PhD program you have to fight for money as well. It makes for a much more stressful early PhD process, though.

Benefits are not guaranteed.

Susanna: Our insurance coverage has run the gamut from fully covered with no copays, to paying $400+ a month for our own coverage under the Affordable Care Act. When Andy held a postdoctoral position as an independent contractor (Peter Buck “Deep-Time” Paleobiology Postdoctoral Fellow) with the Smithsonian Institution – National Museum for Natural History, he was allowed to purchase a healthcare plan through them. Let me walk you through what that would have been like.

Andy was paid $3766 a month. As an independent contractor, we had to deduct our own money for taxes and make quarterly tax payments. So we always immediately deducted $755 per paycheck. We lived in Arlington, VA, outside of D.C., and our rent was $1850 (Andy: That was cheap for the area. D.C. is expensive.). So far we are down to $1161. If we had opted to purchase the Smithsonian plan, we would have had $161 left per month. That would have had to cover utilities, food for a family of three, a Metro pass to get Andy to work (Andy: As an independent contractor the museum doesn’t have to pay for commuting expenses, as they would for a true employee.), gas for our car, auto insurance, any other expense that could and would crop up.

Andy: Susanna also could not get a job, as our daughter was not school-aged and childcare is outrageously expensive in the area. I did get a $2,000 per-year healthcare stipend, though that is not standard with that fellowship; many of my colleagues did not get one.

Susanna: We opted to buy our own coverage through the Affordable Care Act for about $400 a month instead, leaving us with $761 a month for all the above-listed expenses and the ones I’m surely forgetting. It didn’t leave much for anything unexpected, and certainly not much for leisure.

Paycheck $3,766
Tax Withholding -$755
Smithsonian Insurance -$1,000
Rent -$1,850
Affordable Cares Act -$400
Total per month: $761

At UMASS during Andy’s Ph.D. program, we had the same insurance as undergraduate students, including being seen at the campus health services. It was a very different atmosphere sitting in a waiting room full of students. To make a broad generalization, students were often there to get notes to get out of class; I was there because our daughter was vomiting.

Andy: The actual coverage varied quite a bit as well, as the university (UMass) and the Graduate Student Union were in the middle of a series of contentious negotiations. It varied enough that we decided to go onto Susanna’s employer insurance for a while, because if we had had a kid it would have cost thousands of dollars out-of-pocket.

Susanna: Conversely, the coverage for graduate students at University of Wisconsin while we were there was the same coverage granted to the professors. It was, if healthcare can be such a thing, luxurious.

The applicant is usually expected to pay their own moving expenses.

Susanna: When a job does offer relocation funds, they are almost always after-the-fact and you will have to submit a receipt and wait to be reimbursed. Depending on the length of the move, the amount of stuff you have, and the size of your family, this can be a huge burden or a minor inconvenience. In my experience, moving always costs more than you think it will, on both the leaving and arriving ends. We have been lucky to have family financial help when we’ve needed it. We’ve done renting and loading a truck ourselves, hired movers to help pack, load, and drive, multi-day drives with our daughter in tow (and once, dog). We also flew from the United States to England, where we live currently, with only 200 lbs of stuff to start a new British life.

I will point out how frequently there has been a delay in receiving a first paycheck, too, since that appears to be a common complaint. How are you supposed to pay for a move upfront, and then wait 1.5 months to be paid?

Andy: Some places will help you with this. Some of our travel to the UK, and some of our visas were covered by the University and the grant supporting me. The NMNH provided a bit of money as well. Sam Houston State University helped us move from DC to Texas. You will likely not find that in graduate programs, and I also expect it’s less frequent in postdoc programs. It’s also never enough money to cover moving, which is so unexpectedly expensive every time.

Moving somewhere you never considered

Susanna: I am from Michigan originally. After college, I moved to Madison, Wisconsin (Andy: to be with me!), and it wasn’t much of a change. I liked it quite a bit. Western Massachusetts after that was more hilly than I was used to, but again, there were still four discernible seasons. Just the way I like it. Northern Virginia was too hot for too many months in a row.

So what did we do after that? Moved to Texas.

Andy: Something I will apologize for years for.

Susanna: When job-hunting, my husband will sometimes throw out questions to me like, “How do you feel about living in New Zealand?” and I can hardly say no. He has applied all over the world. Around the same time he got the postdoc at the National Museum of Natural History, he had also got a Royal Society Fellowship that would have taken us to Southampton, England. We thought we had missed the chance to live in England by accepting the position in Washington D.C., but another position in Bristol opened up last spring and here we are.

You (Might) Travel

Susanna: Andy has gotten to travel a lot for work. He has gone to conferences, school, meetings, and even sailed onboard the research vessel the JOIDES Resolution for seven weeks. In no order, he’s been to: Germany, Italy, San Francisco, Puerto Rico, Montserrat (Andy: Technically I was just off the coast, never on Montserrat, but close enough), Vancouver B.C., New Orleans, surely others. Unfortunately we could rarely afford for me to tag along, but I did meet him in Curacao when he got off the JOIDES Resolution and we took a vacation there.

When in-person interviews start getting scheduled again, there will be more travel.

Andy: Get a frequent flyer card! It won’t matter because you’ll almost constantly be forced to fly whatever flight is cheapest, but I hold out hope it’ll help someday.

Job-Seeking Starts Earlier Than You Think, and Takes Longer Too

Susanna: Most US places start looking for candidates about a year ahead of time. In this case, that means that Andy started looking for jobs pretty much as soon as he started teaching at a Visiting Assistant Professor position at Sam Houston State University. Each job application required a few hours’ work. The standard documents requested from each candidate are: cover letter, CV, teaching statement, and research statement. Of course, it’s best to spend some time on the boilerplate document and make sure it addresses specifics about the department for which you’re applying. This takes real time.

Andy: I once calculated the time spent on it. A job with 75 applicants, each spending an average of 3 hrs on that application, with letter writers spending 30 minute each, means that 337 hours is spent by people on the applicant side for each academic job. In our case, that means that during job season Susanna is the primary parent on weekends and I’m stuck on my computer typing and editing (until she takes over and edits everything).

Reaching out

Andy: Finding postdoc positions is tough. I’m balancing a family, a research focus, a strong urge to teach or do something where I’m interacting with non-scientists, and more. I got lucky when I blind emailed a potential advisor with a project, he immediately wrote back, we Skyped, and then wrote countless (ok, 6 or 7) postdoc funding applications together. He mentored me though the entire process. Sometimes you get lucky with good timing or just finding the right people.

I’m not one to normally be able to email somebody out of the blue, but having a supportive partner through this experience has made it more possible for me to do my best work.

Conclusion

Andy: All of these are things that we’ve considered over the years about different positions. It’s certainly not an exhaustive list. Certain places have built up structures to exploit graduate students or postdocs. They might have excellent name recognition, but always consider carefully the cost of living, pay, and benefits of a place. It’s a lot harder to get your best science done when you’re worried about the basic necessities of life.

Huge Global Consequences from Melting Ice

Global environmental consequences of twenty-first-century ice-sheet melt

Nicholas R. Golledge, Elizabeth D. Keller, Natalya Gomez, Kaitlin A. Naughten, Jorge Bernales, Luke D. Trusel, and Tamsin L. Edwards

Figure 1. Marine-terminating sections of ice sheets lose mass via ice shelf melting and iceberg calving. Ice shelves have ocean water beneath them, which means that they lose mass by melting underneath. They also produce icebergs, which calve off the faces of marine-terminating regions. The black arrow indicates the direction of flow as the ice sheet spreads from its center to its edges.

The problem: Global policymakers rely heavily on scientific studies to inform their decisions about climate-related policies. However, many climate change scenarios outlined in these studies’ models fail to address the ice-ocean-atmosphere feedbacks that may be triggered by ice sheet melting.

What data were used? To incorporate ice-ocean-atmosphere feedbacks in their estimation of climate consequences, the authors use climate models and data from 23 empirical studies. These data include measurements of the changes in total ice mass, surface mass balance, ice shelf melt, and iceberg calving of the Antarctic and Greenland ice sheets.

Total ice mass is simply the volume of ice that makes up the ice sheet. Measuring the change in mass over time tells us whether the ice sheet is shrinking or growing, and at what rate that mass is changing. Spoiler alert: the ice sheets are most definitely shrinking.

A component of the changes to total ice mass is surface mass balance. This concept describes the balance between net accumulation and net ablation occurring on the surface of the ice sheet. The key process in accumulation is snowfall, while ablation is the process of melting. Thus, we can determine surface mass balance by subtracting the amount of melting from the amount of snowfall.

Two other components of determining changes to total ice mass are ice shelf melt and iceberg calving (Figure 1). Ice shelves are areas of the ice sheet that extend off the continent and over ocean water. When they melt, they directly feed the ocean with freshwater that had previously been trapped in frozen form. Similarly, the process of icebergs calving (i.e. when ice chunks separate from a marine-terminating glacier) removes mass from the ice sheet and adds it to the ocean.

Figure 2. The ice-ocean-atmosphere feedback model predicts widespread thinning of the Antarctic (left) and Greenland (right) ice sheets by the year 2100. This image from the study shows the predicted changes in ice sheet thickness, and regionally attributes the mass change to the four different measures of mass loss. The bar charts show the net mass balance (dark blue), surface mass balance (light blue), ice shelf mass balance (yellow), and iceberg calving mass balance (orange). The shading on the maps represents the change in ice thickness. Areas that are shaded red and orange are likely to thin by 2100, while areas in blue are predicted to thicken by 2100.

Methods: The authors input a series of different climate scenarios into a model that predicts the effects of climate warming and ice sheet melting on ice-ocean-atmosphere feedback loops (Figure 2). Their model varies the monthly and yearly climate conditions over a period from 1860 to 2100 to assess the effects of thinning ice sheets. Starting the model in the past means that they can compare the predictions of the model with actual data from the 23 supplementary studies that collectively span 1900 to 2017.

Results: The model scenarios paired with empirical climate studies come to three main conclusions concerning the future thinning of ice sheets. First, as the Greenland Ice Sheet loses mass, the increasing amount of fresh meltwater will slow circulation of the Atlantic Ocean. The Atlantic meridional overturning ocean circulation (AMOC) is driven by temperature and salt gradients. Thus, a large contribution of cold freshwater would alter the speed of AMOC. Second, as Antarctica continues to deliver meltwater to the ocean, warm water will be trapped below the ocean surface. This creates a positive feedback loop in which Antarctic ice loss will increase from meltwater input to the ocean. Finally, the model predicts that any future ice sheet melt with elevate global temperature variability and contribute an additional 25 centimeters (10 inches) to sea level by the year 2100.

Why is this study important? Our climate is warming, the ice sheets are melting, and the consequences of those changes are substantial. We study past climates to better understand our modern and future climates, and we heavily rely on model predictions to look toward the future. This paper address a key component missing from many climate models (the ice-ocean-atmosphere feedbacks that may result from future ice sheet melting) and shows that some models have underestimated the severity of ice sheet melting consequences. Model predictions are critical tools in global policymaking, so ensuring that those models are comprehensive is essential. Moreover, this paper calls for continued observations of the effects of climate change on ice sheets, oceans, and the atmosphere. Further incorporation of data into models will only help improve their predictions of a future climate that demands new environmental policies.

Citation: Golledge, N.R., Keller, E.D., Gomez, N., Naughten, K.A., Bernales, J., Trusel, L.D., and Edwards, T.L., 2019, Global environmental consequences of twenty-first-century ice-sheet melt: Nature, p. 65-72, https://doi.org/10.1038/s41586-019-0889-9.

Teaching Science Communication to Biology students

Adriane here-

This semester, I was given the opportunity to do something new: lecture to an undergraduate Biology writing class about how to communicate science to non-scientists! I was invited to speak to this class because the professor knew about my education outreach and blogging experiences with Time Scavengers.

One assignments the class had to do was summarize a published scientific paper for the general public. So I thought it would be a good idea to put together a short slide show for the students about who I am, how I got involved in science communication, and an overview of Time Scavengers. I also told the students about some of the lessons I’ve learned as a science communicator, and some best practices. Although there are several tips and tricks for writing for the general public, here are the four I chose to focus on:

  • Science writing for the public should be the opposite of formal scientific paper.
  • Explain figures in the figure caption, even if it is repetitive with the text
  • Use figures that are simple, labeled, and not too overwhelming
  • Reduce the jargon- include explanations and define any jargon words that are used
The students working on their summaries.

The paper the students summarized was about the amount of microplastics, or very small pieces of plastics, that are found in the southern part of the Marianas Trench. The paper and it’s findings are very important because it highlights the fact that our plastic waste is making it into the farthest reaches of our oceans, into the food chain, and affecting our wildlife. So it was a great paper for the undergrads to practice their science communication skills. There was only one catch: they could only use the ‘ten hundred’ most common words from the English language to write their summaries, thus ensuring they couldn’t use any science jargon words. This was done on the Up-Goer Five Text Editor, which allows you to type text directly into a word box, but notifies you if you use a word that is not part of the 1,000 most common words.

When we began the activity, the students were a bit frustrated at first, as words such as ‘ocean’, ‘Earth’, and ‘salt’ aren’t words they could use! But then, they got creative and began coming up with ways to explain some of the more difficult concepts!

Needless to say, this was a really fun activity that resulted in quite a few laughs! I was impressed at how well the students’ summaries really captured the messages in the paper they were summarizing. This activity really highlighted the fact that we (scientists) don’t have to use large jargon-y words to get across important messages!

Below are some of the students’ summaries:

“Lots of small pieces of things you would find all around you are in deep water where they are hurting animals. Deep water animals are hurt when they eat things that they should not eat. People put these man made things in the water and they break down into small pieces that shouldn’t be eaten. There are lots of different things that can break down, and they’re in bags, computers, phones, clothes, and food packs in stores. The small pieces are all around the animals, and they are eating them all the time. People are worried and are finding lots of truth saying that this is going to make the animals die and hurt how they act with each other and what they eat. It also makes them sick because they can’t get bad things in their body out, and can’t make important things that help the brain and body talk to each other. People lost a lot of the bad things that are in the water, and we have now found them in the really deep water, and it is hurting animals in both deep and upper water now.”

“The fine pieces thrown away by human after using are getting into the deep water and hurting the animals that live in the deep water. Many kinds of these used pieces are found in different places of the water, even in the deepest part. This is because that the pieces on the top of the water would go deeper when the land shakes or water moves. Studying these piece can help us better understand them and clean them from the water, keeping animals save in their home.”

“Humans use a lot of stuff that eventually finds its way into the water. These small pieces of stuff start on land and eventually move to the water where it takes a lot of time to break down. Eventually this bad human stuff finds it’s way to the deep parts of the water where it is not supposed to be. Animals living in the water can easily be hurt and get sick by this bad human stuff. With this stuff in the water it will be very hard to take away. In order to keep a lot of life, humans must do something to clean the water. Clean water will help human life as well.”

“We studied problems in bodies of water like bad things on the ground under water. Further down we go, more build up of the bad things is seen. The deeper down in the water, the worse the problem is. Many pieces of bottles and other man made things sit and bother surrounding life. Another problem that was presented in the reading was the ground taking in the man made things-which makes it harder for animals to eat, breathe, and live. The changes that have happened because of the man made things are still not known and being looked into.”

“A big problem that is growing is making the bodies of water, and what lives there, sick. These bad things are small and can be found more in deep water. Humans are bad because they are not safe with throwing away these things so it hurts water animals by making them sick. The well-being of water and animals needs to be helped by humans. Cleaning up water is good, as well as watching what is put into water to stop the problem before it happens. Water is very important to human and animal life, so bad things being put into bodies of water needs to stop. ”

“Lots of small pieces of things you would find all around you are in deep water where they are hurting animals. Deep water animals are hurt when they eat things that they should not eat. People put these man made things in the water and they break down into small pieces that shouldn’t be eaten. There are lots of different things that can break down, and they’re in bags, computers, phones, clothes, and food packs in stores. The small pieces are all around the animals, and they are eating them all the time. People are worried and are finding lots of truth saying that this is going to make the animals die and hurt how they act with each other and what they eat. It also makes them sick because they can’t get bad things in their body out, and can’t make important things that help the brain and body talk to each other. People lost a lot of the bad things that are in the water, and we have now found them in the really deep water, and it is hurting animals in both deep and upper water now.”

Humans placed too many bad things like bags and bottles in the deep water. This, in the end, hurts the tiny animals living in the water. If this goes on, it will even hurt our entire home later on. We first thought that the bad things were only near the top of the water, however it seems that the bad things are even in the deepest parts of the water as well. The people who study this are explaining how they found this out in this paper.

Bethany Allen, Computational Paleobiologist and Education Outreach Fellow

Fossil hunting at Robin Hood’s Bay, North Yorkshire, UK. Photo credit: Alex Dunhill.

I am currently a PhD student at the University of Leeds, UK. My research looks at the role of mass extinctions in driving long-term trends in ecology and evolution. I do this by analysing large volumes of data from the fossil record, which requires statistical programming, an approach often termed computational paleobiology.

I’ve always enjoyed the problem-solving nature of science; it can be frustrating at times but really satisfying when all of the pieces of the puzzle fit together. As an undergrad, I studied Biology and Earth Sciences at Durham University, UK, before going on to complete a Masters in Palaeobiology at the University of Bristol, UK. Both of these courses helped to cultivate my passion for evolutionary biology, and equipped me with the scientific approaches and data analysis skills I needed to tackle “big data” questions in paleontology.

Admiring the museum collections at Galerie de Paléontologie et d’Anatomie comparée [Gallery of Paleontology and Comparative Anatomy] in Paris, France, with fellow paleontologist Vishruth Venkataraman. Photo credit: Rhys Charles
My PhD project is focused on comparing large-scale spatial patterns of biodiversity (=the variety of life in an area or on a global scale) before, during and after the Permian-Triassic mass extinction event (~250 million years ago), the most severe mass extinction event in Earth history. During this time,  up to 95% of marine species became extinct. Widespread volcanic activity drove extreme global warming, leading to ‘hothouse’ conditions which prevented ecosystems (=a community of animals and how they react with the environment around them) from fully recovering for several million years. Understanding how global warming has affected the biosphere in the past is important for making accurate predictions of how global warming will affect animals and plants in the future.

Most of my data comes from the Paleobiology Database, a global database of fossil occurrences compiled by paleontologists, which is freely accessible to everyone (you can explore the data using the Navigator app). As one of the data enterers, I spend a lot of my time looking for information on fossils published in journals and books and adding them to the database. Once I’m happy with my occurrence data, I analyse them using R, a programming language and environment designed specifically for statistics. It enables me to carry out complex calculations across big data sets relatively quickly, to establish what the fossils are telling us about large-scale evolutionary patterns.

Volunteering with the Palaeontological Association at the Yorkshire Fossil Festival in Scarborough, UK. Photo credit: Jo Hellawell.

I also really enjoy outreach. Alongside my PhD, I work part-time delivering environmentally-themed school sessions, building on the experience I gained doing outreach with the Bristol Dinosaur Project during my Masters. At present, I’m particularly involved in delivering ‘Fossil Hunt’ sessions, visiting local schools to give 7-11 year olds the opportunity to handle fossils and learn about paleontology. It’s great to be able to show the children what ‘real’ scientists look like, and I always leave refreshed by their enthusiasm.

I love my research because it strikes the perfect balance between being something I’m really interested in (evolutionary biology) and requiring something I’m good at (data science). My advice to aspiring scientists would be to find this crossover in your own skills and interests – science takes perseverance, and that’s much easier when you’re making the most of your talents and are passionate about what you’re doing!

Follow along with Bethany, her research, and her education outreach activities on Meet the Scientist, Published

Preparing Samples for Stable Isotopic Measurements

Adriane here-

Recently, Andy and I have started to collaborate on a research project together. Well, the project is his, and I’ve agreed to do some lab analyses for him in exchange for being a co-author on the research paper. Being a co-author means that on a published journal article, I will have my name as one of the people who contributed to the science in the paper. My job for this project is to pick, weigh, and analyze foraminifera for stable isotope analyses. In this post, I’ll go over briefly how I do this!

Lucky for me, Andy had already picked the foraminifera he wanted to be analyzed from his sediment samples and put these into cardboard trays. Each tray is labeled so that it corresponds with the sediment sample from which it came, thus I know exactly which sample I’m working with. The first step is to take the cardboard tray and put it under the microscope. Using a paintbrush with water, I gently pick up the foraminifera specimens and place them in an aluminum tray. After I’ve filled up all 14 of my aluminum trays, I take these and weigh them on a microbalance, which is a fancy name for a scale that measures very small weights (in this case, micrograms). I want the samples to weigh between 180 to 220 micrograms, as this is the ideal mass needed to get a good measurement. After the samples are weighed, I then put them into a tall glass vial that is numbered. I have a spreadsheet on my computer where I keep track of which sample is in which vial.

The home-made device we use to pump helium into the vials and air out. We fill 10 vials at a time for about 4-5 minutes each.

After I have about 60-80 vials of weighed foraminifera, I can then begin the process of analyzing them for stable isotope measurements. In this case, we want to measure carbon and oxygen (see our ‘Isotopes‘ and ‘Carbon & Oxygen Isotopes‘ page for more details on what these data are used for). This process is a bit tedious and always makes me nervous, but it’s also kind of fun!

The acid is poured into a syringe with a needle, and then four drops of acid are inserted into each vial. It’s a very medical-like procedure for a geologic endeavor!

Analyzing foraminifera for stable isotopes means working with a mass spectrometer, a (very expensive) machine that, very simply put, measures the amount of carbon and oxygen that are within a gas. Notice that the mass spectrometer needs a gas, not a solid, to be able to take a measurement. This is where things get fun! The first step is to make sure all of the air is out of the glass vials. To work correctly, the mass spectrometer has helium constantly being pumped through it. No air is allowed into the system, as air contains oxygen, and oxygen is one of the elements we want to measure. If air gets into the mass spectrometer or into the vials, it’ll ruin the results of the analyses. To rid the vials of air, I put the vials on a contraption that continually pushes helium into the vials through one tube while letting air out of another small tube. I let the vials fill with helium for about 4 minutes each. After the vials are filled with helium, I then put acid into each vial. Four drops of 100% pure phosphoric acid is placed into each vial. This is done to turn the foraminifera, which are made of calcium carbonate, into gas (any acid placed on calcium carbonate, the material which seashells and foraminifera are made of, will cause them to dissolve). Because calcium carbonate is CaCO3, the resulting gas includes elements of both C (carbon) and O (oxygen).

Once all the vials are filled with acid, it’s then time to start the mass spectrometer! This is a very easy process considering the machine itself is complex and intimidating (well, at least to me). In short, I basically change the file names, make sure the machine knows how many samples its analyzing, and then I click the ‘Start’ button. Each sample takes ~12 minutes to analyze, so an entire run of 60 to 80 samples takes about 12 to 16 hours.

The last part of this process will be to take the results, put them into a spreadsheet, and give them to Andy. From there, Andy will have the hard but fun job of interpreting the data and writing the majority of the research paper (with help from us, when needed).