Noel Hernandez Gomez, Paleontologist in Training

A photo of Noel Hernandez sitting on top next to a river coming from a waterfall in the middle of a valley in Mackay Idaho during a field work excursion.

Born in Caracas, Venezuela, I am an aspiring scientist from birth who loves the outdoors and hopes to make a difference in the world. When I’m not doing research, I prefer to spend my time going out and seeing new things, whether that’d be a new nature trail, or a fun night with friends, there is always something to enjoy about life, which is why I have a strong passion for helping the world and all its beauty.

I am currently an undergraduate student at the University of South Florida, on my senior year for a Geology B.S., I have plans to go to Grad school in the future, and hopefully attaining a PhD as my career progresses. My focus is paleontology, and all the research I have done so far is on invertebrate animals, more specifically on crinoid evolution and echinoderms. I am currently performing research on a growth series of eight samples of Erisocrinus typus lead by Whitney Lapic and with the help of Dr. Sarah Sheffield and a previous study of hers. We mostly focus on reading past studies from many authors that talk about the species we are dealing with and examining samples to understand how these animals used to grow. Our goal is to have a publication on this by the end of the year. My goal is to keep doing research such as this for the foreseeable future and perhaps focus on other part of paleontology as well, not just confined to invertebrates.

As discussed previously, my main goal as a scientist is to make a difference in the world, and I chose to do so by studying our past. Growing up, I was surrounded by a country drowned in conflict and turmoil, I took these experiences as motivation to change this, not just for my country, but for the entire world. The change that needs to occur for a better tomorrow, starts with the right information, and science is the pursuit of this information, all facets of science are bound by this uniting principal. My work does not have obvious major implications for our society, but understanding the development of ocean creatures, even those of hundreds of millions of years ago can have contextual importance to our understanding of the oceans today and how global climates have changed in the past. Paleontology focuses on gaining an understanding of the past so that we can have an idea of what our future holds.

A contribution that I hope to make to the scientific community is to facilitate the exchange of information between English speaking scientists and Spanish speaking ones, since my native language is Spanish, and I am fluent in it, my hope is to broaden the range in which paleontology can be talked about and end the age of Eurocentrism for science.

For any up-and-coming scientist, whether they are paleontologists, or any other kind of scientist, I would strongly advise to never limit yourself due to your expectations of what you should be. Scientists are talked about as these unreachable and mighty individuals that hold the infinite knowledge of everything, and this notion can make it difficult sometimes to get in contact with professors or mentors, but the reality is that scientists are just humans, who aren’t perfect, and are just as capable as anyone else, don’t have reservations about reaching out to the members of your college or the faculty of your university, there is always a need for bright minds.

Newly discovered hatchling sea turtle fossil track marks allow paleontologists to compare ancient sea turtle breeding ranges and climate conditions compared to that of the modern day

New fossil sea turtle trackway morphotypes from the Pleistocene of South Africa highlight role of ichnology in turtle paleobiology

Martin G. Lockley, Hayley C. Cawthra, Jan C. De Vynck, Charles W. Helm, Richard T. McCrea, Ronel Nel

Summarized by Sophia Gutierrez, who is majoring in geology at the University of South Florida. She is currently a senior and plans to pursue some experience in the field before continuing to further her education with a graduate program majoring in sedimentary geology. When she’s not studying geology, she enjoys walking in nature and listening to music.

What data were used? Three coastal sites, showing never before seen fossilized sea turtle hatchling track marks were discovered on the south coast of South Africa originating from the late Pleistocene (~100,000 years ago). Two species of sea turtles were ultimately identified from their trace fossils at the sites as loggerhead (Caretta caretta) and leatherback (Dermochelyis coriacea) sea turtles. Some track marks showed multiple “footprints” coming out of a centralized area that could possibly represent the ancient nesting location.

The three coastal S. African sites with never before recorded sea turtle hatchling fossil traces (A) Site 1, 3 loggerhead hatchling track marks, Australochelichnus agulhasii. The 2 track ways on the right show overlap. (B) Site 2, a leatherback turtle hatchling curved trackway, Marinerichnus latus, with red marks to show the lengths of the inner and outer sidelines. (C) Site 3, the long arrows show two sets of loggerhead trackways, Australochelichnus agulhasii, from different hatchlings. The shorter arrow shows an uncertain trace, but this may signify the remains of a nest in the center where the circle is.

 

Methods: This study used two dimensional (2D) and three dimensional (3D) photographed images of the trackways in track sites 1 and 2, not far from each other, showing the sea turtle hatchling trails that were preserved in the large slab of rock. Tracing diagrams were then drawn to illustrate detailed trackway patterns of the two hatchling species. Site 3 fossils were found on a portable boulder. The boulder was photographed and taken to be preserved and studied at a separate location.

Results: After the fossil traces had been properly examined, it was concluded that the sets of tracks found in site 1, on a large slab of rock that had fallen off the side of a cliff, were those from hatchling loggerhead sea turtles. Site 2 is positioned close to site 1 in a narrow cliff pass filled with fallen rock slabs and boulders. One of those slabs holds fossilized hatchling leatherback sea turtle tracks. The final track site was found about 100 km (~62 miles) away from the other two, on a portable boulder that showed newborn loggerhead tracks appearing suddenly from the ground, likely representing the moment the hatchlings traveled out of their nest in the sand. Site 3 is especially interesting because it shows two sets of track marks emerging from the sand but paddling in opposite directions, 180° from each other. Site 2 also shows indications of the hatchling emerging suddenly from the sand but in this case, it’s unclear to say if this suggests a nest or shows signs of inadequate trace fossil preservation. These fossilized loggerhead and leatherback hatchling sea turtle tracks have never been documented before and are fairly distinct from other marine and terrestrial turtle track sites recorded. Due to these reasons, the paleontologists who discovered these tracks may assign these ichnotaxa (a taxonomic group based on the trace fossils of an organism) new, original names: Australochelichnus agulhasii for the hatchling loggerhead tracks and Marinerichnus latus for the hatchling leatherback tracks. These ichnotaxa provide us with copious information about ancient sea turtle breeding ranges, given that both loggerheads and leatherbacks nest in very specific conditions. This gives an insight on how the climate conditions in the late Pleistocene may have been in this area where temperatures were calculated to be about 25° to 35° C with a water level up to 6 meters (20 ft) higher than they are today. The presence of the Marinerichnus latus tracks made by leatherbacks (site 2) so close to the Australochelichnus agulhasii tracks made by loggerheads (site 1) in the area they were found in suggests that the breeding areas for the leatherback were twice as extensive in the Pleistocene than they are today.

Why is this study important? This study allows scientists to combine what is known about modern sea turtle hatchings with what was discovered from fossil tracks from about 100,000 years or so ago. The location that the trace fossils are preserved in can reveal to scientists the environmental and climatic conditions of the late Pleistocene, which could broaden the understanding of naturally changing climates of the past and the rapidly increasing climate change in the present day. Along with that, due to the close range of the leatherback and loggerhead turtle fossil nest sites in sites 1 and 2, this study demonstrated that modern breeding ranges of both leatherback and loggerheads have been halved in the past 100,000 years.

The big picture: This paper studied the ichnological evidence (the trace fossils made by an organism at the time it is alive) made by two distinct species of hatchling sea turtles. Scientists related the breeding ranges of modern sea turtles to the ancient breeding ranges they observed at the fossil sites and suggested the climate of the late Pleistocene ranged from 25° to 35° C and had sea levels up to 6 meters (20 ft). As of 2021, loggerhead sea turtles are endangered and leatherback sea turtles are vulnerable species. This study could potentially help future populations of these species due to the new knowledge of ancient breeding ranges relative to the specific nesting conditions.

Citation: Lockley, M. G., Cawthra, H. C., De Vynck, J. C., Helm, C. W., McCrea, R. T., Nel, R. 2019. . Quaternary Research 1–15. https:// doi.org/10.1017/qua.2019.40

Brittany N. Price, Paleoclimatologist

Brittany, a brown-haired woman, wearing PPE while working on a gas bench in Northern Illinois Universities Stable Isotope Laboratory.
Brittany wearing personal protective equipment while working on a gas bench in Northern Illinois University’s Stable Isotope Laboratory

Similar to many children, I was always fascinated by volcanos! The dynamic way in which they change the landscape inspired me to pursue a degree in geology. While this interest and appreciation of volcanoes has never faded, a new specialty piqued my interest in my second year at university – Paleoclimatology. The idea that the past climate history of the earth could be reconstructed over millions of years by analyzing the chemical makeup of microfossils preserved in oceanic sediments quickly made me alter my focus, and subsequently my entire career trajectory! I spent the next three years working in the Paleoclimatology and Stable Isotope Geochemistry labs at the University of Miami to prepare forams (microfossils) from the Gulf of Papua (off the coast of Papua New Guinee) for stable oxygen and carbon analysis to better understand the influence of sea level, as well as variability in the East Asian Monsoon system in the western Tropical Pacific.

Fast forward almost 15 years and I am nearing the completion of my PhD. I now focus on terrestrial records that I use to assess variability in hydroclimate dynamics (i.e. rainfall) over the Holocene around the Pacific Ocean Basin. My current projects include a wide variety of locations and proxy data, from establishing chronologies of glacial advancement and recession in the South-Central Chilean Andes, to carbonate isotope reconstructions from small lake basins in Guatemala and Nicaragua. Moving forward I hope to work on better constraining the roles that aridity and convection play in the global hydroclimate system through the use of stable isotopes, as well as to reconstruct better land-based temperature proxy records. It is truly amazing to witness the analytical advances that have been made even during my relatively short career as a geoscientist!

Brittany, wearing full PPE including a face shield, working to decant hydrofluoric acid from samples used for cosmogenic chlorine-36 dating.

If I were to give one piece of advice to aspiring geologists it would be that no two paths look that same, so it is best not to compare yourself to others! There are so many interesting careers in our discipline, and it is alright to explore them. After I completed my undergraduate education, I continued on for my Masters in Geology. While I had wanted to work on terrestrial sediment cores, I ended up working on a basin analysis project using seismic reflection data. Having this skill set opened avenues that I hadn’t originally considered for myself, and led to a job offer and a career working in the oil and gas industry for 8 years. However, I realized that I was still truly inspired and passionate about Paleoclimatology, and that I still had so much more I wanted to learn. I decided to leave the workforce, and as a more mature student (at least 10 years older than the average age of my cohort) I entered the PhD program at Northern Illinois University. Returning to the world of Paleoclimatology has been one of the best and most fulfilling experiences of my adult life, even if the path I took to get here was a bit longer than most.

Brittany, woman in a wide-brimmed hat and fleece jacket, on a snow-covered field in front of a small cirque glacier
Brittany on a snow-covered field in front of a small cirque glacier.

Scavenging, Cannibalism, and Survival in Jurassic Utah

High frequencies of theropod dinosaur bite marks provide evidence for feeding, scavenging, and possible cannibalism in a stressed Late Jurassic ecosystem

Stephanie K. Drumheller, Julia B. McHugh, Miriam Kane, Anja Riedel, Domenic C. D’Amore

Summarized by Reynolds Hansen. Reynolds Hansen is an undergraduate geography major / geology minor at the University of South Florida. With a lifelong passion for paleontology instilled from an early age, Reynolds always knew the academic path ahead had a singular destination. Along the way, he picked up equal affinities for history and geography, and by the time he was in college, he worried he might have to choose one over the others. With the help of the university’s esteemed academic professionals and resources, he shifted focus with the goal of becoming a science communicator, telling the story of our world from the formation of the earth to the modern day as an interconnected narrative. Reynolds is set to graduate in the spring of 2021, after which he wishes to seek a post-graduate degree in paleontology, and a career as an educator. His academic focus is utilizing GIS to research paleoecological phenomena.

Methods: The study collected fossil data from the Upper Jurassic Mygatt-Moore Quarry in Utah, USA (MMQ). Out of 2,368 found specimens, 684 specimens positively displayed some damage resulting from contact with theropod dinosaur teeth. These damages were categorized into broad categories- pits, punctures, scores, and furrows (Fig 1.) The dimensions of these features, along with spacing between them, measured from raking light (light shone upon an object at a low angle in order to more easily observe details on its surface) and low magnification, helped the team to determine the species responsible for the damages. The marks here were also compared to identical features left by large, modern mammalian predators to determine intent- where on the body the animal was removing material, and whether this was done during predation of scavenging. These marks are considered in relation to ‘low’ and ‘high’ economy regions- meaning, the parts of prey animals that provide low or high nutritional benefit respectively. The goal of these methods was to determine the extent of scavenging behaviors among theropods- a group of mostly carnivorous, bipedal dinosaurs with hollow bones and three-toed limbs. The theropods in question in this region were primarily Allosaurus and Ceratosaurus.

A. Striations produced by teeth on Allosaurus claw. B. ‘Score’ left on an Allosaur vertebral centrum. C. ‘Score’ left on Apatosaurus rib fragment. D. Group of ‘furrows’ on an Apatosaurus pubis (part of the hip). E. ‘Puncture’ (white arrow) and ‘pit’ (yellow arrow) on an Allosaurus caudal (near the tail) vertebral centrum. F. dense group of ‘furrows’ on an Apatosaurus ischium (part of the hip). All scale bars are equal to 10mm.

Results: As in many cases, predation behavior is often dictated by environmental conditions. In the MMQ, sediment suggests an environment with low deposition rates, allowing for animal remains to be exposed for longer periods of time, which consequently allows for remains to be scavenged repeatedly. Tooth striations on the formation’s fossils suggests typical theropod behavior was targeting soft tissues near high-economy regions (regions that provide the most nutritional benefit). However, just less than half of all marks on herbivores are also located in low-economy regions, indicating that remains were stripped of any possible material by large theropods. These statistics flip when tooth marks are found on theropod remains, where more than half of the tooth marks are found in low-economy regions. Together, these findings may suggest that aside from remains being present for longer periods of time, the region may have also been prone to periods of nutritional hardship, leading to cannibalism among theropods when scavenging, and possibly even predation. For any of the theropods present in this ecosystem (Allosaurus, Ceratosaurus, and possibly Saurophaganax or Torvosaurus), these occurrences would mark the first recorded cases of cannibalism for these species, implying a need that is situational in times of hardship, rather than a trait reserved to specific species.

Why is this study important? The importance of this work is twofold. In the first manner, it provides insight into an area that is integral to understanding an extinct carnivorous animal: how it eats. The paper mentions on a couple of occasions that, to date, the conventional understanding of how theropods acquire nutrition was by focusing primarily, maybe even exclusively, on soft-body materials- the aforementioned ‘high economy’ zones. There had been little evidence up to this point for scavenging behavior among theropods, aside from some works regarding this behavior in tyrannosaurs, although even this was at least partially inferred to the development of osteophagy (the ability to eat and derive nutrients from bones) in these animals. So too with cannibalism, where Majungasaurus represented the only known case, again, for tyrannosaurs. With this study, theropods appear to resemble something more within the norm of how we understand most carnivores to behave: opportunistic consumers who take advantage of ‘free’ scavenge-able meals where they could get them, and who are none too picky in troublesome times. The second point of importance, and perhaps light criticism, from this piece is the allusion to the practice of fossil collection by institutions. The question is raised by the paper: if this behavior were to be commonplace, why is there so little evidence of it? The MMQ had recently undergone a transition of collection practices, from selective collecting to a more total method, taking in as many specimens as possible without too much scrupulousness for overall quality. The team cites this change as a likely reason for the abundance of tooth-marked fossils in the study, since they were not tossed aside preemptively for not being ‘aesthetically pleasing’, ‘good quality’ fossils.

The Big Picture: This paper does as much to reflect on paleontological research practices as it reveals about theropod behavior. On one hand, its revelations of how theropods survive difficult times by extensively scavenging every possible resource- and apparently from any source- is certainly a tremendous leap in this field for dinosaur behavior. The other side of the coin is that this study may not have had such diverse results if it were not for size and breath of the MMQ’s sampling. The commentary from the paper is subtle but cautionary: that we should aim to eliminate bias at every opportunity in research, but also in our very initial collection efforts.

Citations: 

Drumheller SK, McHugh JB, Kane M, Riedel A, D’Amore D. 2020. High frequencies of theropod bite marks provide evidence for feeding, scavenging, and possible cannibalism in a stressed Late Jurassic ecosystem. PLOS ONE 15(5):e0233115

Rogers, Raymond R.; Krause, David W.; Curry Rogers, Kristina (2007). “Cannibalism in the Madagascan dinosaur Majungatholus atopus”. Nature. 422 (6931): 515–518

Benjamin Keenan, Biogeochemist

Photo showing Benjamin in the foreground with a volcano erupting the background
Benjamin during an eruption of Volcán de Fuego or Chi Q’aq’ in Guatemala

Hello everyone. I am a biogeochemist who uses ancient molecules found in lake sediments to investigate interactions between humans and their environment. I am finishing a PhD in biogeochemistry at McGill in Montréal, Québec. I like skiing and ice skating, jazz, and when the earth is not frozen over I spend my lot of time bike-camping and swimming outdoors. I moved to Canada after a degree in geological sciences in England/California and working as an environmental consultant, a water engineer, and as a research assistant at the Complutense University of Madrid.

My current research looks at how the lowland Maya interacted with their environment and how they responded to climate change over 3,300 years. I take samples from Central America, extract organic molecules known as lipids and analyse them using different methods. I use plant waxes as a proxy for vegetation and hydrological change (how wet or dry it was) in the past, polycyclic aromatic carbons (from the incomplete combustion of carbon) as a proxy for biomass burning the past, and faecal stanols as proxies for population change.

My first chapter shows that population declines in the southwest Maya lowlands are associated not only with drought at multiple times throughout history, but also with anomalously wet periods, and has also highlighted potential efforts to reduce soil erosion as well as the use of night soil (human waste) as fertiliser in the past. This work attracted a lot of media interest, including from the CBC, Haaretz, El Mundo, and Archaeology Magazine, and will be vulgarised in the magazine Le Climatoscope. It also forms part of the chapter “Climate Change and Variability in the Protoclassic” in Remaking Maya Civilization, Social and Political Transformations in the Protoclassic Maya Lowlands.

Benjamin wearing a striped shirt, shorts and wellington boots in a tree over a cliff reaching out to collect leaves for analyses
Benjamin in the field in Guatemala collecting leaves for plant wax analyses

Now I am in the process of writing my thesis, which I will submit in December, and working with a digital artist to create a virtual Itzan, the archaeological site where the samples I have analysed were taken from. I think it is important for people to know that ancient societies were affected by climate change and by looking at responses to environmental change in the past how we might better understand anthropogenic climate change today and in the future. I am particularly interested in migration as climate change adaptation and am a member of the McGill Refugee Research Group.

Most students are fortunate enough to be on campuses with interesting seminars and public lectures in different departments that you can attend and make connections between your interests, your research and what is happening in different areas and at different scales. This is interesting and can be fruitful, and helps prevent you from getting stuck in the rut of your niche bit of research. Attending talks in anthropology, geography, and social sciences has given me new perspectives for my thesis, where the question I am researching requires an interdisciplinary approach.

Figure from Keenan et al. (2021) showing population change in the context of palaeoclimate and changes in pollen (a proxy for deforestation).

My Experience at the Wyoming Dinosaur Center

Ohav here–

Earlier in the spring, I got an email containing a flyer for an internship that grabbed my attention with a simple question: “Do you like dinosaurs and digging in the dirt?”. As an aspiring paleontologist, I thought, to no surprise, “I love both of those things!”, and I looked into the offer further. A few references and an interview later, I had managed to get a position! That May, I would be going to Thermopolis, Wyoming.

When I started my first day, I was surprised at how dense with information the museum was. I knew that being in a small town, the museum would be much smaller than its contemporaries. Even so, I was not prepared for the amount of stuff in that building! Still in awe of all the beautiful specimens in the main hall, the other interns and I began our orientation. There were a handful of programs and activities available which we would work together to lead, the following of which were the most common.

First, were the Museum Tours: the most basic of the activities, but by no means the least fun. It is exactly as it sounds: a tour of the museum. However, we interns were allowed and encouraged to put our own personal spins on them. This meant making our own scripts, deciding which exhibits to focus more on and which can be breezed through, cherry-picking the coolest fun facts to share with our groups, and even including pop culture references. For example, we would often describe the length of our Supersaurus, Jimbo, by using the metric of Jeff Goldblums. Since Jimbo is 120 feet long and Jeff Goldblum is 6’4’’, we estimated that Jimbo was about 19 Jeff Goldblums long. This went over particularly well with those familiar with his iconic role in Jurassic Park.

Second, were the Bus Tours. The Bus Tours were also simple: drive a van full of people up the mountains of the Morrison Formation to our most significant dig site, Something Interesting (SI), and give them a tour of the place. The tour, in short, was a look through a window to about 150 million years ago, and explored not only the dinosaurs found there, but also the geochemistry and even the seasonality of prehistoric Thermopolis.

Third, were the Shovel Readies, which involved taking group(s) up the mountain to one of our four active sites to dig for a few hours. These would occur either in the morning or the afternoon.

Fourth, and my favorite activity of all, was the Dig For a Day program, or DFD. DFDs were a combination of the previous activities plus an expedition to the Sundance Formation, which underlies the Morrison and yields marine fossils. A DFD day would start with an SI tour, followed by a few hours of digging at one of our sites, then lunch, then prospecting (looking for new fossil sites) at Sundance. Although most guests found dinosaurs more interesting than the marine invertebrates, the promise of being able to keep whatever invertebrate fossils they found sweetened the deal. Finally, after the Sundance, we would conclude the day with a museum tour, which included a sneak peek into our collections and prep lab.

Working with so many wonderful people, who themselves are amazing scientists, was an unforgettable experience. Living with them added to the overall experience too, as we all got to know each other quite well, making the group dynamics all the more interesting. Of course, this is expected from a group of people who love dinosaurs and other prehistoric life spending seven weeks together in the same house. More than anything, though, I loved being able to teach guests about the history of life. Because the museum exhibits were organized with a “tour through time” in mind, it was especially easy and fun to walk guests through the steps life took to get to where we are today. In addition to teaching, I was able to learn a lot. The other interns’ tours alone allowed me to gleam a significant amount of information and insight, since their versions always had things I didn’t know in them. Beyond the tours, I learned much from the museum staff who trained us, learning how to find pathologies and taphonomies in fossils from the head prep lab manager and how to find and map them in the field from the dig site manager. In the lab especially, I came to see some of the most interesting things which made me think more and more about the intricacies of dinosaur morphology and what pathologies that they may have developed.

My biggest take-away from my internship was being able to learn from so many people and being able to pass that knowledge on to others. I was extremely fortunate to work in such an amazing establishment and learn so much, as well as make so many good friends. Going up the mountains of the Morrison, nearly every day for seven weeks, was something I won’t forget. Walking where the dinosaurs walked and digging their remains, and being able to educate all the while, was a small taste of what I hope to do in the future. Now, I must say: if you ever find yourself on a road-trip to Yellowstone or otherwise find yourself in Wyoming, please take the time to stop by the Wyoming Dinosaur Museum in Thermopolis. This hidden gem has much to offer, and the town is charming too!

Happy National Fossil Day 2021!

National Fossil Day poster for 2021 by the National Park Service.

Today is International Fossil Day! 

International Fossil Day  is an initiative by the International Paleontological Association and the National Park Service (National Fossil Day in the U.S.), the idea is to spread the interest in the life of the past and many different organisations and museums around the world host events or activities today. Of course we, the Time Scavengers team, have to participate in this, there can never be too much paleo-related fun! 

We want to celebrate IFD by showing off our team members’ favourite extinct species or individual fossils, some facts about the species or individual and why we picked them as our favourites.

Click here to visit the National Park Service website to learn more about National Fossil Day, and here to visit the International Palaeontological Association to learn more about International Fossil Day!

Linda

A fossil cave bear skeleton. Image credit: Wikipedia.

Most of my paleontology lectures during my undergrad took place in small rooms somewhere deep in the side wings of the institute building, on the edge of the paleontological collection/museum that is located within the institute. Whenever me and my friends were waiting for our professors to show up, we would stare and marvel at the exhibited specimens. I vividly remember walking into that area for the first time, it is dominated by a huge, mounted skeleton of an adult cave bear (Ursus spelaeus) and I was completely blown away by the sheer power it radiates. I didn’t care too much about the T. rex skull cast around the corner that most others found so fascinating. From that first day of paleo classes, having my own mounted cave bear skeleton has been on the top of my bucket list. U. spelaeus lived during the Pleistocene across both northern Asia and Europe and went extinct during the Last Glacial Maximum about 24,000 years ago. They are closely related to brown bears (Ursus arctos), the two species have a last common ancestor about 1.2 million years ago. Even though they were huge, powerful bears that were reaching 3.5m (11.5ft) when standing upright, with large teeth and fearsome claws, it’s currently thought that the majority of the western populations were eating an almost exclusively vegetarian diet! Recently, two very well preserved frozen cave bear carcasses have been discovered in two separate areas of thawing permafrost in Russia, an adult and a cub, both with almost all soft tissue present and intact. I’m already excited and looking forward to reading all the new research that will be done on these specimens!

Maggie 

Cast of U. anceps skull. Image credit: Wikipedia.

I worked at the Field Museum of Natural History during the summer of 2015 and that experience was what solidified my interest in paleontology. I worked with my supervisor on Eocene mammals from the western United States and had some of my first experiences doing large scientific outreach events during that summer. Because of that summer I will always have a soft spot for Uintatheres!

Uintatheres (U. anceps) lived during the Eocene in North America and were large browsers. These animals looked similar to rhinos but male U. anceps had six knob-shaped protrusions coming off of their skulls. Part of my experience working with these fossils was reorganizing the collections space that housed the skulls, they are incredibly heavy! I mentioned that U. anceps were browsers, but they also had long canine teeth that resemble the canines of saber tooth cats. These teeth may have been used as a defense mechanism but also may have played a role in how they plucked leaves from plants. While I don’t work on Eocene mammals now, Uintatheres will always be special to me for the role they played in getting me excited about paleontology and scientific outreach!

Whitney

Whitney next to Asteroceras stellare.

I cannot pick just one fossil to highlight right now, so here are two of my favorites! In 2016, I was studying in England and visited the Natural History Museum in London where I saw an incredible ammonite, Asteroceras stellare. Asteroceras was a large ammonite that lived during the Early Jurassic and whose shell reached nearly three feet in diameter. Asteroceras was a nektonic carnivore who might have fed on fish, crustaceans, and bivalves.

Whitney in front of an ichthyosaur!

My favorite vertebrate fossil is the Ichthyosaur. I loved visiting the Jurassic Coast in England and got to explore Lyme Regis, both the birthplace of Mary Anning and a town that had references to paleontology everywhere you looked. You can see ichthyosaur fossils in both the Lyme Regis Museum and the Natural History Museum in London and at the NHM, you can see some of the specimens that Mary Anning and her family had collected along the Jurassic Coast. Ichthyosaurs (Greek for “fish lizard”), are marine reptiles that lived during much of the Mesozoic and were thought to be one of the top aquatic predators of their time.

Mike

Mike in front of an American mastodon statue!

I have three favorite extinct species: the American mastodon (Mammut americanum), the dinosaur Parasaurolophus, and the chalicothere Moropus elatus. Mastodons are distant relatives of the elephants, and they seem to be overshadowed by the wooly mammoth. However, both lived in North America until the end of the Pleistocene epoch. I’ve always thought that Parasaurolophus was an elegant duck-billed dinosaur, and I’ve seen them featured in several movies in the Jurassic Park series. I think that chalicotheres are so bizarre! Distant relatives to horses, rhinos, and tapirs, imagine a big draft horse with giant claws instead of hooves! I’ve seen several skeletons of these over the years. Moropus elatus went extinct in the Miocene epoch.

Mike next to a Moropus elatus skeleton!
A statue of Parasaurolophus.

Alex

Like anyone in paleo would tell you I can’t pick one particular fossil organism as my favorite. Currently my favorite fossil organism is the “bear-dog” known as Amphicyon ingens which would have been a formidable predator during the Mid-Miocene. The cenozoic was a time for innovation in mammals and bear-dogs were the best of both worlds. All the stoic grandeur of a bear and all the cute charm of a dog, what more could you want? The picture shown was taken at the American Museum of Natural History in New York City.

Amphicyon

Jonathan Jordan (Paleo Policy Podcast)

For me, the Mesozoic reigns supreme. However, my recent trip to the La Brea Tar Pits in Los Angeles gave me a greater appreciation for the Cenozoic era and mammalian evolution in general. While it may not be my favorite fossil ever, I was captivated by Panthera atrox’s look and the idea of an American Serengeti 340,000 to 11,000 years ago. Genetic analysis suggests with high likelihood that Panthera atrox is a close relative of the Eurasian Cave Lion (Panthera spelaea). After the Bering Strait land bridge was submerged by rising sea levels, Panthera atrox was isolated from its Eurasian relatives and became a distinct species that has been found as north as Alaska and as south as Mexico. Neat! Check out an image of Panthera atrox’s skull on the Smithsonian Learning Lab site!

Kristina

I’m fortunate to have worked on many different types of animals during my career, starting with dinosaurs, then moving to Devonian brachiopods and their encrusting organisms, and now working on much younger Pleistocene-aged animals that are still alive today. I mostly study biotic interactions, such as predation, so I thought I would share my favourite trace fossil (ichnotaxon), Caedichnus! Trace fossils are different than a body fossil because they show evidence (or traces) of an organism or its behaviour. In the case of Caedichnus, this trace fossil is created by a crab trying to break into the shell of a snail by peeling away at the shell opening (aperture) until it can reach the snail’s soft body. Imagine having a crab try to peel your shell back like an orange – scary! Caedichnus traces are useful for determining how many crabs were in an area, and identifying patterns of crab predation through space and time. I’m now using them to determine the impacts of climate change and human activity on crab fisheries since pre-human times.

Adriane

Like most of my colleagues above, it is incredibly hard for me to say which fossil is my favorite! So instead, I’ll talk about my favorite fossil group, the foraminifera. Foraminifera are single-celled protists that live in the surface ocean (planktic foraminifera) or in/on ocean sediments (benthic foraminifera). Planktic foraminifera are my favorites; they evolved about 175 million years ago, and still live in the global ocean today! One of the ways which we know about past climate states how the ocean behaved to such warming and cooling events of the geologic past is through analyzing the chemistry of fossil foraminifera shells, or tests! Foraminifera are also incredibly useful in studies of evolution, as they have a robust fossil record. Learn more about Foraminifera here!

Various planktic (surface-dwelling) foraminifera (marine plankton) species. Images are 60-100x.

What’s YOUR favourite extinct species? Let us know in the comments, maybe we will feature them in a future post!

Devra Hock, Paleontologist, Ph.D. Candidate

Tell us a little bit about yourself.
Hi! My name is Devra Hock and I am currently working on my PhD on mammalian paleoecology. Outside of my research, I love dance and musical theater. I’ve danced and performed my whole life and recently that interest has shifted towards aerial dance (think Cirque du Soleil, but much less fancy). I teach aerial hoop and pole fitness classes, as well as perform with my aerial studio in Lincoln, NE. Having something else to focus on with non-academic goals and challenges allows me time to have fun and accomplish personal goals. I also have a love of vintage-inspired fashion, and want to help re-define what scientists look like.

What kind of scientist are you and what do you do?
Right now, I am a PhD candidate at the University of Nebraska-Lincoln, which is very similar to a research scientist. I conduct my own research for my dissertation, as well as teach in my department and assist my advisor with his research. I’m studying mammalian paleo-ecology, and specifically looking at how the distribution of mammalian traits can be used to predict environments. To do that, I use historical mammalian distributions and their associated traits and environments as proxies to build a model that can be applied to the fossil data. Currently, I am comparing both North American and African mammal data to determine which is the best proxy to use for Miocene North American fossil localities. Another part of my research is examining the change in North American mammalian distributions from historical to modern times and discussing possible causes. In addition to my research, I am on the board of the Association for Women Geoscientists and currently transitioning from a region delegate to the Communications Coordinator after participating on the communications committee being in charge of the AWG Twitter and part of the team that keeps the website updated.

What is your favorite part about being a scientist, and how did you get interested in science?
I grew up loving going to museums and science centers, but that did not translate into an interest into science as a career field until middle school, with a 6th grade field trip focusing on earth sciences. That was my first exposure of geology as a scientific field. From there, the following year I researched what radiocarbon dating was for a research fair at school and used woolly mammoths as my example in that project. While working on that project, I found myself going down the paleontology documentary rabbit hole and got more and more interested in paleontology itself. In high school, I was lucky to have a science teacher that had a background as a paleo-anthropologist, and I was able to really develop my interest in paleontology throughout high school.

As a scientist, I appreciate the skill to look for questions that don’t have answers and to think critically about data and facts presented to me. I’ve also learned how to be collaborative with a variety of people from different disciplines. Additionally, one of my favorite parts about being a paleontologist is our ability to essentially time travel through our research. Especially when we’re out in the field, we’re standing in rocks that formed millions of years ago and finding fossils that haven’t seen the light of day since they were buried. As a geologist and paleontologist, we’re able to look at the rocks and interpret what environment created each rock layer, and travel through different environments as they changed through time. In my specific field of paleo-ecology, we try to understand what the interactions of animals and their environments looked like throughout time.

How does your work contribute to the betterment of society in general?
My research has two broad contributions to society. First, my research of historical versus modern mammalian distributions will add to our knowledge of the changes occurring in the natural world around us and what the potential causes might be. These discussions contribute to the work of ecologists and conservationists as they work to maintain our natural spaces for future generations. Second, my research into paleo-ecology will add to our knowledge of the evolution of environments and animals throughout time, which also contributes to our understanding of why and how environments change and what the animals’ response has been in the past.

My work with the Association of Women Geoscientists and local outreach events creates discussions about equity and equality in the geosciences for women and other underrepresented groups. Currently both with AWG and in my own department, I have been working with others to find sustainable and achievable methods to increase diversity and inclusivity in the geosciences and to dismantle systemic and institutional barriers.

 

What advice do you have for up and coming scientists?
My biggest piece of advice is to find a way to try out things you’re interested in to see if you really like doing them. I started doing field work in high school as a gauge if I really did like paleontology in practice and not just from TV documentaries. It’s also a great way of building experience and connections. My second biggest piece of advice follows that, which is networking. Just like any other field, your path is what you make of it, but knowing other people in your field can change the shape of your path. Don’t be hesitant to reach out to professors or researchers in the field that you’re interested in. With emails, the worst that can happen is they never respond! Science is filled with opportunities, but unfortunately opportunities aren’t always equal. You may have to seek out experiences that will help you later on. There are a lot of unspoken rules and expectations, and sometimes you won’t get opportunities you are qualified for, and that’s not your fault. You just have to keep pushing and your time will come. However, with everything I just said, don’t lose yourself to your science. We are all multi-faceted human beings with lots of different interests. Make sure to take time for yourself and your other hobbies. Time away from school or research is just as important as time spent working. While school and research are important parts in your life, they aren’t your entire life. Remember, you can’t do science if you’re burned out!

To learn more about Devra and her research, visit her website here!

Alex Klotz, Physicist

Photo by Sean DuFrene

I am a physics professor at California State University, Long Beach. My specialty is biophysics, which as the name suggests is at the interface of physics and biology, and I’m interested in using materials from the natural world to answer fundamental physics questions. Evolution has had billions of years of practice to engineer neat materials, while we have only been doing it for a few thousand. I spent a few years looking at knots in DNA to understand how entanglements between in and between molecules affect the mechanical properties of things made out of molecules. Now I study DNA structures called kinetoplasts, which are basically sheets of chainmail made of thousands of linked DNA loops. They look like tiny jellyfish and are found in the mitochondria of certain parasites. Among other things, I’m trying to use them to answer questions about the physics of 2D materials that are important for bringing materials like graphene (single-layer carbon) to actual technological use. Totally unrelated to my work with DNA, I also wrote a paper calculating how long it would take to fall through a tunnel through the center of the Earth (38 minutes), which was all over the news for a few days back in 2015.

I also dabble in outreach; I kept a blog about my various science thoughts and adventures for a few year and volunteer for programs like NetPals and Skype-a-Scientist. I’m hoping to start a similar program here in Long Beach. Right now the most outreachy thing I do is make dumb science jokes on twitter, which mainly reach other scientists.

My favorite part of being a scientist is figuring something out that nobody has figured out before, it is an amazing feeling. I remember the first “discovery” I made during my senior thesis in college and the few that I made over the next few years. Now I’m lucky enough that I get to discover new things a few times a year. I’m training several students in my lab and I hope they get to feel that as well.

A kinetoplast, which is a network of about 5000 linked DNA rings, is seen here under a microscope moving along with a flowing liquid. Its shape changes from a folded taco to a flat frisbee as it moves. Scale bar is 5 microns, about one-tenth the diameter of a human hair.

My main hobby the last few years has been road biking, which I like as a way to experience the outdoors, meet people while not having to talk non-stop, and stay fit and active. It was a pretty good hobby to have during the pandemic when there was nothing else to do. I used to play ultimate frisbee, but I’ve been injured for a few years. I like animals although I don’t currently have any pets. Another pandemic hobby I picked up was walking around the neighborhood every morning and meeting all the outdoor cats. I just moved a month ago so I have to meet all the new cats.

I won’t say too much about the path I took and how you should follow it, because it involves a good deal of privilege and luck. My advice to graduate students is to attend as many seminars as you can, not just in your own sub-sub-sub-field of research. You learn a lot about your discipline that will come in handy later, you can make good contacts, and you can get ideas that you may be able to apply to your work.

Rachel Roday, Graduate Student and Marine Scientist

Rachel transporting a sedated sandbar shark to a respirometer to understand shark metabolism.

My favorite activities are ones that help me connect to nature, such as SCUBA diving, kayaking, and painting landscapes. Even as a child, I spent all of my free time at the beach or obsessing over turtles, so it was no surprise when I decided to pursue marine science as a profession. I obtained my Bachelors of Science in marine science and biological sciences from the University of Delaware where I conducted research on shark respiration and zooplankton behavior. I also completed an internship at Mote Marine Laboratories in Sarasota, Florida examining red tide toxins from Florida beaches.

Currently, I am a graduate student at the University of Texas at Austin Marine Science Institute. Though I have yet to begin my thesis, my research will focus on understanding the role of per- and polyfluoroalkyl substances (PFAS) in marine fishes. PFAS are a group of approximately 4500 manmade chemicals that are water, heat, and oil resistant. They have been found in non-stick pans, fire-fighting foams, stain resistant carpets, and many other common use items and are known carcinogens in humans. Little is known about the impact of these chemicals on marine fishes, so I hope to fill some of this knowledge gap by determining the toxicity of lesser known PFAS compounds and how they might be transferred from parent to offspring. As a scientist, I aim to understand the extent of human impact on biology within the marine ecosystem. In the future, I hope to influence the regulation, product development, and disposal techniques of manmade chemicals such as PFAS, insecticides, sunscreens, and pharmaceuticals in order to protect the environment and ultimately, us humans.

Rachel on a dive in the Florida Keys during her internship at Mote Marine Laboratories

It took me four years of undergraduate classes, several internships, and two wildly different research projects to figure out the specific area that I wanted to focus on in graduate school. In other words, I got really good at figuring out what I didn’t want to pursue. This would be my greatest piece of advice to someone looking to find their way in science or any profession: try out lots of things, as many as you can! Not only does a range in experience bring about a unique perspective, but you never know what one door might open for you later on down the road.

I also suggest that people learn about the science that interests them in their backyard or community. As a Long Island native, this was easy for me because growing up, I was surrounded by beaches. But even learning about the local plant life or stargazing at night can help curate your specific scientific interests. I believe that having a personal and maybe even emotional relationship with nature and science can instill passion that propels you through all of the more tedious and challenging parts of life. Overall, even if science is just a hobby and not a career end-goal, I think it’s important to find ways to make it accessible at home and never be afraid to ask questions!

Rachel aboard a Norwegian research vessel in the Arctic Ocean during the polar night, researching the photobehavior of copepods, a small crustacean.