Antarctica School

School participants and instructors gathering to look over cores from Antarctic

Dipa here – 

This summer a few members of the UMass Micropaleo Lab traveled to Texas for the first ever International Ocean Discovery Program-Past Antarctic Ice Sheet (IODP-PAIS) Antarctic School at Texas A&M University! This program allows scientists from all over the globe who research Antarctica to come together to study the marine sediment cores stored at the IODP Core Repository. 

During our week at the repository, our mornings were filled with lectures and real-life activities led by geoscientists who have sailed on previous drilling cruises. We learned from them what shipboard life is like, how drill cores are taken, what problems can arise while drilling in Southern Ocean around Antarctica, and how to interpret the clues within the drill cores. To explore those clues, we were divided into mini-research teams and each given a core section from a prior expedition to analyze. Each afternoon we rotated among different core analysis stations: how to make and analyze microscopic smear slides, how to describe the macroscopic features of the core section, how to gather and interpret paleomagnetic and density data on the core sediment, how to scan core sections for key trace elements and improve your paleoenvironmental interpretations using element abundance data, and how to develop a timeframe for your core section (chronostratigraphy). Putting this all together, we were able to map a pattern of ice advance and retreat over where the drill core was taken. Since the core sections we were studying came from expeditions, we were able to double-check our data and interpretations against the published results and see how successful we were–my group was able to match the chronostratigraphy of the original study! 

Gathering the density profile of our core section.

I was excited to learn so much and gain so many new friends at the Antarctic School, but my excitement was tempered by being the only woman of color in the program. I was ashamed to learn that an international program participant could not attend because they were not granted a U.S. visa in time: the American visa process is extremely biased, and as an international organization the IODP should use their agency to help all invited participants attend, regardless of their countries of origin. It is not enough to non-racist in today’s society–we must be actively anti-racist. I think international STEM research programs such as this one should hold spots specifically for students of color, students with disabilities, and other folks who are traditionally marginalized and underrepresented in STEM to attend. Programs like this are critical for early-career scientists to network with each other and the leading scientists in the field, and without holding doors open for marginalized students, how else will diversity in STEM increase? 

The X-ray fluorescence scanner used to identify trace elements in the sediment cores
Group photo of IODP/PAIS Antarctic School participants and instructors

Microplastics Alter Plankton Poop

Microplastics alter feeding selectivity and faecal density in the copepod, Calanus helgolandicus

Rachel L. Coppock, Tamara S. Galloway, Matthew Cole, Elaine S. Fileman, Ana M. Queirós, & Penelope K. Lindeque

Summarized by Adriane Lam

The Problem: There is a growing body of research that shows that microplastics, tiny (1um-5 mm) pieces of plastics, have made their way into the deepest reaches of our oceans and are being ingested by marine life. Microplastics ingested by animals have been shown to cause adverse health effects to them, but as consumers of marine animals, these same microplastics are making their way into our diets. As yet, we do not know the exact ways in which microplastics can affect human health on longer time scales.

Zooplankton, which are small animals and protists that float in the water column and feed on primary-producing phytoplankton, are an important link between phytoplankton and other, larger animals. Zooplankton make up the base of the food chain, and are the main food source of marine mammals such as blue whales.

Different species of copepods.
Different species of copepods.

One type of zooplankton is especially common in our oceans today. Copepods are marine crustaceans that are found in nearly every freshwater and saltwater habitat. In addition to being an important food source, copepod poop is an important part of the biological pump. In other words, these animals’ poop transports atmospheric carbon dioxide (which is trapped in organic matter, or fixed carbon) to the seafloor, where it is stored in seafloor sediments.  The poop also provides important nutrients to other animals that live within or on top of these sediments. Copepods have been shown to ingest microplastics in the wild. The ingestion of microplastics by copepods may alter the way in which these animals select their food. And of course, if microplastics are being ingested, they are also being exported to the seafloor in fecal pellets. This study was designed to look at how microplastics alter how copepods choose their food and how the ingested plastic materials affect the sinking rate of copepod poop.

Methods: In this study, the scientists grew three species of microalgae (all that copepods like to feast on) in the lab and spiked it with different types of microplastics. The microplastics included things such as nylon, which is commonly found in clothing, especially active wear, and polyethylene, which is the most commonly-used plastic in the world (it is used to make shopping bags, shampoo bottles, and toys, to name a few uses).

The microalgae with microplastics was then fed to the copepods back in the lab, where the amount of microplastics ingested. The fecal pellets from the copepods were then collected and rinsed over a screen. To determine if microplastics contained in the poop affected the sinking rate of the pellets, the scientists dropped the pellets into cylinders filled with filtered seawater. They marked where the pellet was in the cylinder every 40 mm. To determine how different each pellet sank with microplastics, the scientists also measured the rate at which copepod poop without microplastics fell through the water column. When the poop reached the bottom of the cylinders, they were taken out and examined under a microscope. This way, the scientists could count the number of plastic pieces in each pellet.

Results: The scientists found that copepods preferentially liked to eat microplastics in a smaller size range (10-20 um), with a preference for the polyethylene over nylon fibers. When the copepods were exposed to microplastics, they preferentially did not eat as much algae. In addition, the copepods shifted their preference for one species of algae over others. Nylon fibers impeded ingestion of algae that was a similar size and shape to the microplastics. The scientists think the copepods associated algae of similar size and shape with microplastics, and thus avoided eating that algae species in an attempt to avoid plastic consumption.

Images of the contaminated copepod poop. Image a contains nylon fibers, image b contains polyethylene spheres, and image c contains polyethylene spheres.

The study confirmed that fecal pellets that contained both polyethylene and nylon particles were slower to sink through the water column. There was a difference in sinking rates between poop that contained more polyethylene, a denser microplastic, compared to nylon, a less dense material.

Why is this study important? This study is one of several that highlight the ways in which plastics are negatively affecting our food chain in the marine realm. The reduced sinking rate of fecal pellets may also affect the rate at which carbon dioxde, a major greenhouse gas, can be removed from the atmosphere through photosynthesizing algae who are then eaten by zooplankton. If fecal pellets are left to float for longer, there is also a higher potential of the microplastics being re-ingested by other zooplankton through coprophagy (ingestion of fecal pellets). On long and short timescales, the decreased export of poop and fixed carbon dioxide to the seafloor may have large consequences, as plastic within poop could keep more carbon from being exported and stored on the seafloor.

Citation: Coppock, R. L., Galloway, T. S., Cole, M., Fileman, E. S., Queirós, A. M., and Lindeque, P. K., 2019. Microplastics alter feeding selectivity and faecal density in the copepod, Calanus helgolandicus. Science of the Total Environment 687, 780-789. Online.

Climate Science Day on Capitol Hill, Washington, DC

Shaina here-

Have you ever wished there were more scientists involved with politics or politicians who were more informed about science? I certainly have. So when an opportunity to travel to Capitol Hill to get training on how to meet with legislators about climate science- and to actually meet with their offices- presented itself I jumped on it. Policy proposals that impact science are happening around us all the time and the best way for scientists to help ensure that policies are backed by science and support the scientific process is for us to get involved. There are many different programs through various scientific societies that provide training to student scientists and early career researchers on how to communicate their work to policy makers. The specific program I participated in is called Climate Science Day and is coordinated by 12 different scientific societies. The training took place at American Association for the Advancement of Science (AAAS) in March 2019 and my participation was sponsored by the American Geophysical Union (AGU). The objective is to provide a non-partisan way for us to meet with congressional staff, begin building relationships with offices, and learn about some of the work that is currently being done on the Hill.

In total thirty five early career scientists participated and we were broken into teams of three based on geographic region. My teammates were Logan Brenner from Columbia University and Heather Sussman from SUNY-Albany, and our team leader was Lexi Shultz the Vice President of Public Affairs at AGU. Together we met with 7 congressional offices from Massachusetts and New York. To prepare us for the meetings we had a webinar and informational packet to go through in advance of the trip. These materials covered how Congress is structured, what the differences are between the Senate and the House of Representatives and how that impacts the work each side does, what the important committees relating to climate change are, and how to effectively communicate during meetings. They also emphasized the unified ask of “support, communicate, and use in policy discussions and decisions the scientific community’s consensus on climate science.” When we arrived in DC we had one day to attend a training at AAAS, meet our teammates, and prepare our materials for the next day’s congressional visits.

We had a limited time to prepare for our meetings. We all arrived the day before the meetings were to take place and attended a training at AAAS where we learned how to conduct a congressional visit, heard from a panel of staffers, and met our teammates and team leaders. To have a successful meeting you need to be knowledgeable about who you are talking to. Meetings rarely happen with the legislators themselves, instead they are usually with congressional staffers. The staffers are usually people with scientific backgrounds and occasionally they are themselves early career scientists interning as fellows sponsored by various professional organizations to learn more about the connections between science and policy. They are also very important to getting things done on Capitol Hill and are instrumental in carrying out the work that happens in the offices. Their time is extremely valuable and it is important to speak to them as though they are highly knowledgeable about these topics- because they are!- and to express your gratitude for their time. My three favorite staffers we met with were all fellows and had backgrounds in teaching, solar development, and marine biology!

The most valuable part of the training was the breakout sessions with our teams to decide what our specific asks were from each office and who would lead each meeting. Having a specific ask is very important as this is the action step you are hoping to convince your representative to take. The ask varies based on what you think your member of Congress is likely to want to do and what actions they have taken in the past. For members who are less engaged on climate issues asks should revolve around getting them to commit to becoming more involved. For us one of the offices we met with was of a Rep Katko (R-NY-24). We noticed in looking through the committees he was on that he was the only member of the New York delegation not on a specific environmental committee. We chose our ask for that office to be for him to join that committee. In the meeting at that office we spoke to his staffer about environmental issues that are a concern in his district, how climate change can exacerbate them, and how his work in joining this committee could benefit his constituents. For congressional members who are already active on climate issues we first thanked them for being leaders on such a pressing issue and then asked of them to go a bit farther, for instance by giving a floor speech on recent climate publications put out by government scientists such as the Fourth National Climate Assessment, or co-sponsoring a piece of upcoming environmental legislation. For members in our own local districts, we included in our asks invitations for them to come visit our research labs and perhaps do a public event with us to bring light to scientific work on global issues happening in their local districts and policy work they are doing to advance solutions.

Shaina (center right) and other CDI fellows outside of Senator Markey’s office.

On the day of the meetings we donned our business attire and convened on Capitol Hill. Logan and Heather each led two of the four meetings with the NY offices and I led the three meetings with MA offices. First up was Rep. Clark of MA’s 5th congressional district. It went very well and was the perfect meeting to ease us into the day. We met with a staffer who was a fellow with a background in education. She was eager to hear about our work and said Rep. Clark would likely be happy to complete our ask of giving a floor speech. One of the highlights of our day was meeting with Rep. Grace Meng (D-NY-6) who we requested join SEEC, the Sustainable Energy and Environment Coalition, chaired by Rep. Paul Tonko (D-NY-20) which is one of the most active and effective congressional committees on environmental matters. Later in the day we met with Rep. Tonko’s office and they mentioned that they had just received a call from Rep. Meng asking to join his committee! This was a huge win for us as it meant that Rep. Meng had already acted on our ask just an hour or so after meeting with her office. Another highlight of the day was meeting with the Legislative Assistant for Rep. Adriano Espaillat (D-NY-13). He was very interested in connections between social justice and climate change and how to improve the health and wellbeing of the people in his community, while providing them with good jobs, and working to combat climate change all at once. We ended the day at MA Senator Markey’s office where we met with two staffers who were fellows just out of graduate school- one was a marine biologist and the other worked on solar development and sustainability. We had a great conversation on scientists and scientific data that are being used to craft legislation for the Green New Deal.

The two days on Capitol Hill were a whirlwind of meeting new people and learning how scientists and policy makers can work together to make substantive change. If you want to get involved in communicating with your legislators, check with the scientific societies you are a member of to see if they have trainings coming up. You can also reach out on your own to your local legislators and offer your expertise and knowledge for policy work they are currently doing. In addition if you ever find yourself in Washington DC you can also ask for a meeting yourself if you would like to share your science and find ways your work and expertise can benefit their offices. With so much work needed in developing concrete actions that will help implement a global transition to a climate friendly world we will need everyone getting involved and offering to help in any way they can. You have so much to offer, so get out there and start making it happen!

Dr. Laurie Brown, Geophysicist and Paleomagnetist

Dr. Laurie Brown getting ready to drill a 2.5 million year old lava flow in southern Patagonia, Argentina.

How did you become interested in science?

I always enjoyed the outdoors, growing up outside a small town in upstate New York.  Camping trips with my family took me to many national parks and the wonders of the Western US.  In 8th grade I had a great Earth Science course, which I loved, but I somehow did not connect it as a career path.  I went off the Middlebury College in Vermont to enjoy the mountains and skiing, but majored in Math because it was easy for me.  By Senior year I decided to take a Geology course as an elective (because I liked mountains) and by the second week I was hooked!  It was initially the idea of working outdoors in wild and scenic places that attracted me, but I soon learned there were wonderful scientific problems aplenty.  It was 1968 (yes, I am of that generation!) and the concept of Plate Tectonics was just emerging.  Luckily, I had a wonderful professor teaching the year sequence of Physical and Historical Geology and he brought into class the latest scientific discoveries and made the course exciting and provocative.  He also encouraged me to go to Grad School with my one year of Geology, but lots of Math, Physics, and Chemistry, and the rest is history!

What do you do?

I have been a University professor for 45 years, the last 5 as Emeritus.  Being a professor at a major research university means you do many things, all at the same time!  I taught courses in Geophysics at the undergrad and grad level, as well as other courses needed by my department including Oceanography, Field Methods, Field Mapping, Physical Geology, and Tectonophysics.  I mentored students at all levels, both those in my classes and those working in my lab.  I ran a research program including Masters and PhD students where we worked together both in the field and in my paleomagnetism laboratory.  And, as is common in academia, I did a considerable amount of service for my department, my university, and my profession.

Paleomagnetic cores from Patagonia, cut and labeled, and ready to be measured!

What is your research?

I study the Earth’s magnetic field as it is recorded in earth materials- the field of paleomagnetism.  When rocks form – igneous, sedimentary or metamorphic –they are able to retain a record of the current magnetic field within magnetic minerals (magnetite and hematite primarily) in the rock.  Samples can be collected from these rocks millions of years later and the original field measured for both direction and magnitude.

Field aspects of my research involve collecting oriented samples from in situ outcrops and locations.  Currently I work mostly with hard rocks, both young volcanic flows and ancient metamorphic rocks.  I drill samples from these units using an adapted chain saw with a 1 inch diamond bit, water-cooled to preserve the diamonds.  Usually 8-10 cores are drilled at each site (lava flow or outcrop) and all are oriented in place with a sun compass.  This produces many samples; my current project in southern Patagonia involves 120 separate lava flows, and over 1000 cores!  Paleomagnetic studies also can be done on sedimentary rocks, also drilled in the field, and on lake and ocean cores, where samples are collected from the sediment once the cores are split open.

Measuring basalt cores on the cryongenic magnetometer in the Paleomagnetic Lab at the University of Massachusetts Amherst.

Laboratory measurements are performed on a cryogenic magnetometer in my Paleomagnetism Laboratory here at UMass.  It only takes a few minutes to measure the magnetization in a single sample, but a number of tests for stability and reproducibility are required before the data can be interpreted.  Samples are demagnetized in a step-wise fashion using either high temperatures (up to 700°C) or alternating magnetic fields.  We often measure other magnetic properties of the samples, including magnetic susceptibility (measured both in the field and on lab samples) and hysteresis properties.  Microscopic work or SEM studies help us to identify the carriers of the magnetization.

Current Projects.  I am working at both ends of Earth history as current projects include a major study of paleomagnetic directions from young (< 10 myrs) lava flows from southern South America.  These rocks are being used to investigate how the Earth ’s magnetic field varies in the Southern Hemisphere over the last 10 million years.  Other projects are looking at very old rocks in northern Canada where I study the variations in magnetization in a piece of ancient lower crust, now exposed at the surface, and studies of 900 million year old intrusive rocks in southern Norway that are helping us reconstruct the Earth at a time when all the continents were together in a supercontinent called Rodinia.

Magnetic susceptibility meter on a 1.8 billion year old dike intruding 2.2 billion year old metamorphic rocks, Athabasca Granulite Terrane, northern Canada.

How does your research contribute to climate change and evolution?

Paleomagnetism is able to contribute to studies of climate change, evolution, and the history of the Earth by providing additional methods to both correlate sequences and unconnected outcrops, and by providing additional information on geologic age.  The geomagnetic time scale of normal and reversed polarities is well established, and using this magnetostratigraphy enables us to date sedimentary sequences, and to identify similar sequences in other locations.  Measuring the paleomagnetism of deep-sea cores is so well established that the large drilling ships have on-board magnetic laboratories.  Although I am not doing this kind of magnetic work at present, many other labs are, providing important constraints on the timing and correlation of climatic proxies and many parts of the fossil record.

What is your advice for aspiring scientists?

Persevere!  Find that special part of geoscience that intrigues you and work hard to be the best you can at it.  Take all the various opportunities that are available to you, and see where you go!  There will be ups and downs, but as a career the Geosciences provide many positive and productive possibilities.  With over 50 years of activity in the Geosciences, I can easily say I have never lost my joy of working with and on the Earth and the many interesting problems and challenges it provides.  You, alone, may not solve all the problems facing our planet, but you will greatly contribute to our knowledge of the Earth – its evolution, its history, and its constantly changing environment.  And, along the way, you will interact with a number of other awesome scientists, get to see much of the world, and provide a rewarding and enjoyable career for yourself.

Plankton Photo Shoot Part II: Creating the Perfect Image

Adriane here-

This post is a follow-up to one I wrote previously called ‘Plankton Photo Shoot‘. In that post, I described how I take images of my fossil plankton using a scanning electron microscope, or SEM. But that was really just the first phase of taking images. In this post, I’ll talk a bit about what I do with the SEM images once I have them, and how I clean them up.

After I have SEM images, I save them to a few different folders. When taking images of fossil plankton, we usually take several pictures of the same specimen: one of the spiral side, the umbilical side (think of this as your back and front), and one of the side view of the specimen. After the images are organized into the appropriate folder that corresponds to the side of the plankton I took an image of, I then begin the editing process!

This is a screenshot of an image of a plankton species called Globorotalia tumida. Here, the image is imported into Adobe Photoshop.

The first thing I do is open the image I want to work with in Adobe Photoshop. Once imported, I then use the ‘Quick Selection’ tool to draw an outline around the fossil. I do this so I can copy and past just the image of the fossil into a new document and cut out the background. One I have the fossil isolated, then the real fun begins!

This is another screenshot of the fossil isolated from the background using the ‘Quick Selection’ tool in Photoshop.

The first thing I do with an isolated fossil image is to zoom into the image. The reason I do this is because I want to inspect the image to see how well the ‘Quick Selection’ tool worked. Sometimes, if an image does not have a lot of contrast, or the background looks the same color as the fossil, some of the background will be included in the selection. If this happens, I then use the Eraser tool to go around the outside edges of the image. This makes the image more crisp and defined!

This is what the fossil image looks like when I zoom into the image at 400x magnification. The edges already look quite good, but notice there is a small gray ‘halo’ around the image, which is especially apparent on the left side.

This is what the image looks like after using the eraser tool on the edges of the image. You can’t tell too much, if any, of a difference, but it does help give the image a bit more definition! I also delete the white background before I save the image as a .PNG file type (.PNG files don’t have a background, which is great because then I can put the image against any color background I want to later).

The final image! From here, the image is saved as a .PNG file for later use!

And that’s it! I now have a beautiful fossil image that will be used later in a publication! Of course I have to repeat this process for each fossil (which, right now, I have over 200 to edit!). Stay tuned for Part III of Plankton Photo Shoot, where I’ll show you how these images will be displayed in a publication for other scientists!

Dr. Benjamin Gill, Geochemist

Fieldwork in the Clan Alpine Range of Nevada. This work was part of an NSF funded study on the changes in paleoceanography in response to climate change during the Early Jurassic.

What is your favorite aspect about being a scientist, and how did you become interested in science?

What I love most about being a scientist is being able to follow my curiosity. It’s a privilege to be able work on things that I’m genuinely excited about. I’ve always been interested in the world around me. This probably was first sparked by outdoor trips (camping, hiking, etc.) that my dad took me on when on I was a kid. Specifically, I got interested in geology because my childhood best friend’s dad is a geologist. He took us on trips to collect rocks and minerals; I liked it and my friend was let’s say less enthusiastic about it.

Field work on the Middle Cambrian Wheeler Formation in the Drum Mountains of Utah. This study was to examine the environmental conditions that led to the preservation of an exceptional fossils deposits in this formation.

As a scientist, what do you do?

I study the history of environmental change on our planet in order to determine what was behind this change and its consequences. I mainly do this by looking at the chemistry of the sediments and rocks that were deposited/formed during these time intervals. The chemistry of these materials allows us to reconstruct chemistry of the oceans and atmosphere in the long-distance past.

What data do you use in your research? 

Much of my research involves working with geochemical data obtained from sediments, fossils and sedimentary rocks. Specifically, in our laboratory at Virginia Tech, we have instruments that can measure the amount and the isotopes of (atoms with the same number of protons but different numbers of neutrons) carbon, oxygen, nitrogen and sulfur. However, my students and I don’t just stick to the laboratory — we frequently go into the field to collect samples. In fact, this summer we will be out in Nevada and Alaska collecting samples and data in the field.

Field team for 2018 for our study of the end-Triassic mass extinctions in Alaska. Front row, left to right: Jeremy Owens (Florida State University), Theodore Them (College of Charleston, former PhD student from our lab group), João Trabucho-Alexandre (Utrecht University). Back Row left to right: Me, Martyn Golding (Geological Survey of Canada), Andrew Caruthers (Western Michigan University), Yorick Veenma (Utrecht University), and Selva Marroquín (Virginia Tech, PhD candidate in our research group).

It is also important to point out that much of the work I do involves collaborating with colleagues with a variety of specialties: paleontologists, sedimentologists and mineralogists to name a few. Combining all these different types of data allows us to make more integrated and robust scientific interpretations.

Drilling core from Chattanooga Shale in Tennessee for a study on the Late Devonian mass extinctions. In the foreground is Matt Leroy, PhD candidate in our research group. We were collecting these rocks as part of one of a of his research projects.

How does your research contribute to the understanding of climate change?

 

Studying past events informs us about how our planet responds to past changes in the climate and environment. In other words, understanding these past events helps us understand how the Earth may change in the future. Many of the events my lab group studies involve times of rapid or serve climatic and environmental change and mass extinction events.

What advice do you have for aspiring scientists?

Don’t be afraid to put yourself out there and be wrong. One of my mentors in graduate school says that 99 percent, if not all, of your scientific interpretations are going to be wrong. This isn’t an excuse to be ignorant, but all you can do is to come up with the best explanation with what you have.

Hiking to a field site in Alberta with graduate students from my lab group. This work was part of an NSF funded study on the changes in paleoceanography in response to climate change during the Early Jurassic. Left to right: Theodore Them, Angela Gerhardt and me.

Amazon Tree Mortality

Figure 1. Examples of dead and alive trees monitored in the Central Amazon.

Amazonian rainforest tree mortality driven by climate and functional traits

Izabela Aleixo, Darren Norris, Lia Hemeric, Antenor Barbosa, Eduardo Prata, Flávia Costa, & Lourens Poorter

The Problem: Climate scientists are constantly learning and sharing new details about climate change and its possible effects in the future. However, many of the impacts of climate change have already surfaced and revealed the fragility of our ecosystems. Recently, scientists have observed increasing tree mortality in tropical forests, which are some of the most biodiverse and ecologically important places in the world. Could tree mortality be another consequence of climate change–one that’s happening right now? This study by Aleixo and others (2019) explores this possible connection between modern climate change and downfall of tropical forests.

What data were used? This study uses monthly climate and tree mortality records along with about 50 years of observational data in the Amazon rainforest. Climate data include precipitation, temperature, and humidity. Tree mortality data is categorized by specific traits such as wood density (soft or hard), successional position (when a species colonizes a new area), and leaf phenology (deciduous or evergreen).

Figure 2. a–d, Variation in tree mortality (a), precipitation (b), temperature (c) and humidity (d). When analysing the variation in mortality within years, we found that 19% of all deaths occurred in January (analysis of variance, d.f. = 11; P < 0.001). Interestingly, January is one of the wettest months of the year, suggesting that waterlogged soils and storms may enhance mortality. Monthly values (circles), averages (black lines) and 95% confidence intervals (dashed grey lines) over the study period (1965–2016) are shown.

Methods: Aleixo and others (2019) tracked global climate and tree mortality in an area of the Amazon rainforest monthly for one year. They looked for increased tree mortality that aligned with variations in the climate data. They also examined tree mortality of different species traits during significant climate events in the past 50 years. These events include climate anomalies like El Niño or La Niña (click here to learn more about these).

Results: This study found that Amazon tree mortality is driven by climate, but the relationship is complex. For example, droughts can lead to immediate or slow tree death, depending on the mechanisms at play. Additionally, if a tree has harder wood, it is less likely to die during a drought. Aleixo and others (2019) also found that weather events like low rainfall or high temperatures can either immediately enhance tree mortality or cause increased mortality up to two years later. Similar outcomes are associated with years where El Niño or La Niña are particularly extreme. Various species traits may protect trees from dying under certain weather or climate events, but no single Amazon species is completely safe from the effects of climate change.

Why is this study important? As our climate continues to change and weather events become more extreme, the future of our forests remains uncertain. Even the most biodiverse and ecologically robust regions in the world are susceptible to the effects of climate change. This study provides a modern framework for us to understand those effects. From this, scientists can refine dynamic global vegetation models that predict how forests will respond to climate variability in the future.

Citation: Aleixo, I., D. Norris, L. Hemerik, A. Barbosa, E. Prata, F. Costa, and L. Poorter (2019), Amazonian rainforest tree mortality driven by climate and functional traits, Nature Climate Change, 9(5), 384-388, doi:10.1038/s41558-019-0458-0.

Figure 3. Comparisons of the ratios of annual mortality for different functional groups of species, calculated using two classes of wood density (that is, the mortality of soft-wooded species (0.30–0.69 g cm−3) divided by the mortality of hard-wooded species (0.70–1.10 g cm−3)), successional position (that is, the mortality of pioneer species divided by the mortality of late species) and deciduousness (that is, the mortality of evergreen species divided by the mortality of deciduous species) over 52 years and during 5 years of highest peak mortality (the 1982, 1992 and 2016 El Niño droughts, the 1999 La Niña wet year and the 2005 NAO drought). The black line shows where the ratio is equal to 1 (that is, the mortality rate of the two classes is the same). The results of a Pearson’s chi-squared test are shown. Asterisks indicate a significant result (P ≤ 0.05). Annual mortality rates were higher for pioneers compared with late-successional species, for soft compared with hardwood species, and for evergreen compared with deciduous species. When the mortality rates of the functional groups were compared between normal and extreme years, pioneers experienced much higher mortality rates than climax species in the two El Niño and La Niña years. Soft-wooded species experienced much higher mortality rates than hard-wooded species in the El Niño 1982 year. Evergreens experienced much higher mortality rates than deciduous species in the NAO year.

UMass Undergraduate Research Conference

This year’s pamphlet for the 25th Annual UMass URC! This is the first year the conference has gone ‘green’, meaning the program is now in a downloadable app instead of printed.

Adriane here-

Every Spring, the University of Massachusetts Amherst has a one day event for undergraduate students to present their research, called the UMass Undergraduate Research Conference. This year was the conference’s 25th anniversary. During this event, over 1,000 undergraduate students from the commonwealth’s 28 public colleges and universities come to UMass to present the research they have been conducting, in the form of posters, e-posters, and talks. The conference is open to the public, and is totally free. In addition, the conference is open to students in any and all disciplines, such as Anthropology, History, Nursing, Sociology, Kinesiology, Social Work, and Political Science, just to name a few. The conference is set up so that there are eight sessions, each 45 minutes long, where students present their posters or e-posters (entire 45 minutes) or give talks in sessions (each talk is 15 minutes long, so three per session).

This year, the undergraduate student I have been working with, Solveig, presented her research on the northwest Pacific Ocean. In addition, there was one other student, Kurt, who also presented his research on reconstructing temperatures from sediments in the high northern latitudes. Both of our UMass students did great, and were continuously talking with professors, the public, and other students about the research they have been working hard on this past year.

A row of poster presentations. Altogether, there were probably around 6 to 8 rows of posters!

While our UMass students were presenting, I walked around to chat with students about their research. In short, I was totally blown away by all the cool research being done at campuses across Massachusetts! The first student I talked to was from the nursing school here at UMass. She compiled data that has already been published to quantify how nurses and doctors introduced themselves to their patients. Interestingly, her findings suggested that not every nurse or doctor likes to introduce themselves by their first and last names, as they felt this might give away too much information, and might lead their patients to distrusting them more.

The second student I talked to developed a survey to assess how much trust the public has in their family, community, local government, and national government and agencies with respect to climate resiliency. She surveyed adults in western Massachusetts from a more liberal demographic and found some interesting results. Firstly, she found that people are willing to trust their family, friends, neighbors, and local governments more than national government agencies. This result is a bit off-putting because money for remediation after natural disasters comes mainly from national agencies, not local communities. Secondly, the results from the survey indicate that when it comes to investing in climate resiliency, people would rather put funding towards cleaner energy sources. This is interesting because making a switch to clean energy is something that should be done to curb climate change rather than a resiliency effort.

Solveig presenting her poster to our UMass Geosciences professors.

The third student I talked to had built a model for where clean energy plants should be built in Mexico. This student was in the Department of Engineering, and his data and  models could be given to policy makers to help them determine where to build such plants. From this student, I also learned that Mexico has very ambitious national sustainability goals. They plan to generate 35% of their electricity from clean energy sources by 2024, and 50% by 2050! The last students I chatted with were working with moths to determine how their bodies change during metamorphosis. The students put moth larvae (pupa) into a machine that determines the lean mass and total body fat of small animals in a non-invasive way. I had never heard of such a technique, but here at UMass, there is a lab that uses this technology to scan birds to determine how much body fat they lose during migration. These students were the first to ever use the technology on moths! The students first began the study by keeping the pupa in the machine for a few days. They then injected the pupa with hormones to make the animal’s body think it is a certain time a year, and will thus begin the process of metamorphosis. The machine measures the amount of body fat throughout this process until the pupa hatches into an adult moth. They found that the process of metamorphosis takes a lot of energy, and thus uses up a lot of fat. The undergraduate students are writing up the results of their findings for a journal, which will eventually be published!

All in all, this was a wonderful experience for the undergraduate students that attended and presented. They received crucial feedback on their projects, and were asked questions by professors outside of their respective departments. Because members of the public were also there, the students had to think about how to talk about their research to non-scientists. I would love to see such a conference at other large state universities, as this was a wonderful event for everyone who attended!

Alex Lyles, Karst Resource Technician, US Forest Service

As an avid outdoorsman, getting my degree in geology was the best decision I have ever made. Because of this degree, I currently work as a geology field technician with the US Forest Service in Southeast Alaska. My job focuses on the conservation of karst, a landscape characterized by soluble (easily dissolved) bedrock that often contains caves, sinkholes, springs, and complex subsurface hydrologic networks. Karst ecosystems are exceptionally productive for wildlife, but also sensitive to runoff caused by logging, road building, waste management, and farming. My position in Alaska mostly focuses on potential logging units, since that is the main economic driver and logging near karst features often produces sediment runoff that can inundate karst systems and cause adverse hydrologic, biologic, and ecologic effects on the forest ecosystem.

I first came to southeast Alaska the summer after my senior year of undergrad, having been offered an exciting GeoCorps internship as a cave guide through a partnership with Geological Society of America (GSA) and the US Forest Service. This position, located on Prince of Wales Island, greatly helped me solidify and communicate my passion for geology, particularly the intricate workings of karst geology. I always highly recommend GeoCorps internships to budding geologists and environmental scientists because they expose those with little-to-no experience to potential environmental work in the public sector. It was my GeoCorps position that allowed me to meet Dr. Jim Baichtal, the Forest Geologist for the Tongass National Forest. Jim values my good attitude and enthusiasm for geology and Geographical Information Systems (GIS) mapping, and brought me back to Alaska as a field technician in the beginning of 2017 when I finished my undergraduate degree.

I have remained in this occupation since, and am gearing up to begin my third field season as a Karst Technician in Alaska. While this position is not research-based, I have had extensive opportunity to study the quaternary history of southeast Alaska, focusing on regional to local-scale glacial geomorphology to decipher ice flow patterns during the late Wisconsin Glaciation, which I presented a poster on at the annual GSA conference in 2017. I also know that my job as a tech has greatly sharpened my understanding of geomorphic processes and how they tie into the greater ecology, especially concerning karst landscapes. Much of my position also involves extensive aerial photography interpretation of vegetation and geomorphology prior to entering the area of reconnaissance to determine the “hot spots” for karst features. Aerial photo interpretation has become somewhat less necessary since the recent acquisition of half-meter resolution Light Detection and Ranging (LiDAR) imagery, considering that most caves, sinkholes, and springs are readily apparent upon inspection of the bare earth digital elevation model (DEM). The LiDAR makes my work easier and less likely for me to miss features, but hardly puts me out of a job, seeing as most of these features still need to be field verified and observed by a specialist to determine their significance and role in the landscape before the area undergoes any land management activities.

Left: An image of the bare earth DEM LiDAR hillshade showing a mountain lake draining into a sinkhole. Right: The same area, but with a sink fill function ran through ArcMap and converted to polygon contours to better show the detailed drainage pattern of the feature.

As a field tech, I use GIS every day, mostly centered on geologic and karst vulnerability mapping. We use a High-Medium-Low system to describe the vulnerability of the karst terrain; with High being the areas immediately adjacent to, in the direct watershed, or overtop karst features and cave systems, Medium being the expanse in between high vulnerability areas, or “karsty” areas with a low hydrologic head, and Low being karst areas without features directly leading to the subsurface, these are often covered by thick glacial till (sediments left behind by glaciers) or underlain by less soluble bedrock. No logging activity can occur over areas of high vulnerability karst. My field partner and I will enter units with GPS devices to determine this classification and I use our location data and DEM interpretation to update the “karst layer” that is used by land management specialists in the region. The Tongass karst program serves as a management model for many of the National Forests in the country, so playing a key role in the program has been a great honor and learning experience for me.

Alex enjoying a splendid day hiking through muskegs to get to a reconnaissance area. Photo credit: Brooke Kubby

Working in such an amazing place has definitely had an impact on me. My confidence as a geologist has grown, my navigation skills and competence in hiking rough terrain have developed, I am more comfortable handling responsibility, and my passion for geology and ecology develops every day that I spend contemplating geomorphic processes and geologic history. I believe that I have been especially fortunate to have these experiences, but I would not have gotten to where I am if I hadn’t taken initiative and fully thrown myself into the internships that were available. I now conduct the hiring and interviews for the same GeoCorps position that first brought me here. During college, I was unsure which branch of geology was right for me. It took getting out into the field and immersing myself into a unique environment before I realized exactly where my passions lie, and how I could fit them into the working world. I now plan on attending graduate school this fall for karst hydrogeology, a subject that I would not necessarily have seen myself pursuing 5 years ago. My advice to young geoscientists is to seize opportunity when it presents itself, and dig for opportunity when it doesn’t. Get out of your comfort zone and keep an open mind about how geology plays a role in the world. And finally, when you are applying to jobs or internships, make sure that you give each application your complete effort and attention, even if it might not exactly align with your interests at the time.

Johanna M. Resig Fellowship: Honoring a Wonderful Foraminiferal Researcher

Adriane here-

Johanna Resig’s graduation photo.

I’ve done a lot of stuff during my time here at UMass Amherst, probably too much stuff (including building this website with Jen and collaborators, which is definitely something I have no regrets about!). Because of the amount of teaching, outreach, and large research projects I’ve done and continue to do, my PhD, which is funded by my department for 4 years, will take an extra year. However, my funding runs out at the beginning of May 2019.

It’s not uncommon for a PhD degree to run over the 4 year mark; in fact, it’s really quite common. But how to sustain oneself for this extra time is the tricky part. There is money available to graduate students to support us in our final year(s) of our degree through fellowships and grants. These are often very competitive and hard to win, but totally worth applying for. So I decided to apply for a fellowship to fund the remainder of my time here at UMass.

The fellowship that I applied for is through the Cushman Foundation for Foraminiferal Research, an organization specifically for scientists who work with fossil plankton. The organization has been around for quite a while, and its members include professors, researchers, and students from all over the world. The Foundation is great because they have several grants and awards for students, to fund their research and travel to local, regional, and international meetings.

A photo of Dr. Resig and her pet cat! I was thrilled to find this photo, as I too am obsessed with foraminifera and cats!

The Johanna M. Resig Foraminiferal Research Fellowship is named after its namesake, who was a life-long foraminiferal researcher and editor of one of the most prominent journals for foraminiferal research, the aptly-named Journal of Foraminiferal Research. Johanna was born in Los Angeles, California on May 27, 1932. She  found her love for geology at the University of Southern California, where she received her Bachelor of Science in 1954 and her Master of Science in 1956. After graduation, Johanna went to work for the Allen Hancock Foundation. There, she studied foraminifera that live off the southern coast of California. In 1962, Johanna was awarded a Fullbright grant, a very prestigious award that gives money to scholars to study abroad for a few years. With this grant, Johanna continued her research at the Christian Albrechts University in Kiel, Germany. While in Germany, she earned her PhD in natural science in 1965. Once she had her doctorate, Dr. Resig began a professorship at the University of Hawai’i as a micropaleontologist in the Institute of Geophysics. She was the first woman recruited in the Hawai’i Institute of Geophysics, and remained the only one for several years. She was a professor at the university for over 40 years, where she published over 50 articles and book chapters on foraminifera. Dr. Resig published mainly on benthic foraminifera (those that live on the seafloor) as well as planktic foraminifera (those that float in the upper water column). She worked with sediments from all over the world, and also used the shells of foraminifera to construct geochemical records of our oceans. During her career, Dr. Resig described and named five new species of foraminifera and even a new Order! Dr. Resig was not only known for her research, but she was also a dedicated mentor and teacher at the University of Hawai’i. While there, she taught hundreds of undergraduate and graduate students in her courses, and mentored about a dozen graduate students. When Dr. Resig passed away on September 19, 2007, her family gave funds to the Cushman Foundation in her name, and thus the Johanna M. Resig Foraminiferal Research Fellowship was established.

Interestingly, my PhD advisor, Mark,  worked with Dr. Resig during her career. They sailed together on a large drillship called the Glomar Challenger, which took sediment cores of the seafloor for scientists to study. During an expedition together to the western equatorial Pacific (called ‘Leg 130’), they were both micropaleontologists (scientists who use tiny fossils to interpret the age of the sediments and reconstruct the ancient ocean environments). Mark is a huge fan of country music, and he recalled that he loved to play country music on the ship while the scientists were working. One song he was particularly fond of, ‘All My Exes Live in Texas’ by George Strait, was deemed entirely comical by Johanna! Mark describes Johanna as a dedicated scientists, a wonderful micropaleontologist, and someone that was a joy to be around.

A group photo of the scientists who sailed on Leg 30 in the western equatorial Pacific Ocean in 1990. Dr. Johanna Resig is circled in red.

The fellowship named after Dr. Resig will support the remainder of my time as a PhD student at University of Massachusetts Amherst. The money will be used as stipend (which is a fancy academic word for income), but it can also be used for analyses and lab expenses and travel to conferences. One way in which I’ll use the money is to pay an undergraduate student to process sediment samples that I will use in my next research project. This way, I’ll get a jump-start on my next project, and a student will be earning money doing science. They will also learn more about the samples that are collected as part of scientific ocean drilling. It’s totally a win-win situation, and I feel that by using part of the fellowship to mentor and help the next generation of students, I am honoring Dr. Resig’s memory and her commitment to mentoring and advising.