Victoria Crystal, Geologist, Paleontologist, Podcaster

Victoria collecting fossils in the field

Growing up in Denver, Colorado, Victoria developed a passion for paleontology by frequently exploring the Denver Museum of Nature & Science. She later got her bachelor’s degree in geology from Colorado College and her master’s degree in geology and paleontology from the University of Colorado Boulder.

Victoria’s research focuses on understanding ancient ecosystems from the Late Cretaceous period (the time of the dinosaurs) and the early Paleocene (the time just after the extinction of the dinosaurs). She uses two different approaches to do so:

 1- Geochemistry – She measures the carbon and oxygen isotopes in fossil dinosaur teeth to learn about what the dinosaurs were eating and drinking. Tooth enamel is made up of several different elements, including oxygen and carbon. When the tooth enamel is made inside the body, the oxygen ingested by an organism from its drinking water is incorporated into the chemical structure of the enamel. And the carbon in the tooth enamel comes from the food the organism eats.  In this case, Victoria is looking at the teeth of herbivorous dinosaurs, so the food is plants. Victoria is interested in where the dinosaurs are getting their water and food. She asks questions like, “are dinosaurs drinking water from large rivers that flow down from mountains? Or are they drinking water from ponds and streams on the floodplain? And are the plants they are eating close to the banks of these water sources or are they farther away?”  

Victoria using a rock saw to collect fossils out of very hard sandstone

2 – Paleobotany – She also measures the size and shape of fossil leaves to determine what the average temperature was when the leaves were alive and how much it rained at that time. This helps her to determine what the climate was like in the past. She is also curious about how plant communities recovered after the mass extinction at the end of the Cretaceous. This is the extinction that famously killed the dinosaurs, but also about 60% of plant species in North America went extinct too. So when she looks at the size and shape of fossil leaves to learn about the climate of the past, she also analyzes how many different types of leaves there were. This helps her to answer questions like, “how soon after the extinction did plant communities start to increase in diversity (meaning number of plant types)? How soon after the extinction did we start to see forests and rainforests in North America?” 

Along with geology and paleontology, Victoria is also passionate about education and STEM outreach. She is a certified Environmental Educator and has spent summers teaching science and leadership at the Keystone Science School and the Logan School for Creative Learning in Colorado.  She is also the host of the podcast Ask a Scientist, in which she interviews scientists asking them questions written by elementary and middle school students. She encourages everyone, including aspiring scientists, to be curious about the world around them and to always ask questions.

Victoria using a dremel drill to sample dinosaur tooth enamel
Podcasting!

Understanding how climate change affects predator-prey relationships in snails and clams

Climate-mediated changes in predator-prey interactions in the fossil record: a case study using shell-drilling gastropods from the Pleistocene Japan Sea

Tomoki Chiba and Shinichi Sato

Summarized by Baron Hoffmeister

What data were used? This study used a predator-prey analysis of drill holes found on fossil bivalve (clam) shells produced by gastropods (snails) found in the Oga Peninsula off the coast of Japan.

Methods: This study used computer analysis on fossil assemblages of bivalves to determine the location of predatory drill holes and the species of bivalves which indicated whether they are warm water dominant or cold water dominant species. The location of the drill holes on the bivalve shells was also analyzed to determine different predatory gastropods (Figure 1).

Figure 1. These are photographs of two predatory drill holes taken from a microscope. Section A-C is a predatory drill hole located on the center of the shell, and section D-F is a drill hole located on the shell edge. These two different types of predation patterns indicate two separate predatory gastropod species. Image from Chiba and Sato (2016).

Results: This study showed that drilling predation was influenced by the change of sea surface temperatures and sea level due to glacial-interglacial climate cycles. A glacial period occurs due to cool temperatures and glacial advancement, and an interglacial period occurs when glaciers retreat and sea level rises due to warming temperatures. As warm water currents decrease, so does the presence of warm-water predator gastropods. This causes them to shift their range, therefore changing rates of predator and prey interactions. In this study, predation slowed as seawater temperatures decreased and in turn found that this moderated the predation pressure between the gastropods and bivalve prey. This study also found that predator and prey interactions in a shallow-marine ecosystem are likely to weaken with cooling temperatures and strengthen with warming temperatures.

Why is this study important? This study indicates that predator-prey relationships can be used to help interpret changing climates and the implications it has on ecosystems. This study also notes that ocean climate variability has large implications of range shifts which can be used to interpret how organisms respond to changing climate conditions.

The big picture: The information found in this study can be used to help interpret current-day climate change and its influence on predator-prey relationships in relation to the biogeographical distribution of species due to ocean temperatures. This is useful for identifying ecosystems globally.

Citation:

Chiba, T., and Sato, S. I.. (2016). Climate-mediated changes in predator-prey interactions in the fossil record: a case study using shell-drilling gastropods from the Pleistocene Japan Sea. Paleobiology 42(2), 257–268. doi: 10.1017/pab.2015.38

Geosciences programs should drop the GRE, here’s why.

Adriane here-

For a few years now, there has been a debate raging in the science community: Should admissions at universities and colleges drop the requirement that students need to take the GRE for graduate schools? This is a conversation that has been steeped in inherent and implicit biases, data, and a gross misunderstanding of how standardized tests impact students. In this piece, I won’t go into details about how our own biases affect the decisions we make and opinions we form. Rather, the purpose of this post is to pull together the available data that show that the GRE is, in fact, an ineffective tool to predict the success of graduate students. To further this narrative, there are also personal stories from people who have taken the GRE included in this post.

Here is a list of US-based Geology/Geography programs that have dropped GRE.

The GRE

First, a bit of background about the GRE test. The GRE, which stands for Graduate Record Examinations, is a standardized test that students take who are applying for graduate schools, including law and business school. The GRE itself is created by ETS, a company that touts itself as creators of ‘some of the most well-known and widely used educational assessments in the world’. There are different types of GRE tests, called Subject Tests, depending on what the student wants to focus on as their career path: Biology, Chemistry, Literature in English, Mathematics, Physics, and Psychology. There is no subject test currently for the geosciences, so students who wish to pursue a graduate degree in this field just take the General Test. 

The General Test is broken down into 3 major categories: Verbal Reasoning, Quantitative Reasoning, and Analytical Writing. Each of these categories is supposed to test the student’s ability to draw conclusions from discourse and reasoning, summarize text, and distinguish major from minor points, measure the ability to understand, interpret, and analyze quantitative information, apply mathematical skills to problem-solve, and measure critical thinking and writing skills. These are just a few things the GRE is designed to measure, as stated on their website (https://www.ets.org/gre/revised_general/about/). 

To take the GRE test, there is, of course, a fee involved. The current prices to take the test as of July 1, 2020 are as follows:

Australia $230
China $231.30
India $213
Nigeria $226
Turkey $255
All other parts of the world $205

(All data from https://www.ets.org/gre/revised_general/about/fees/)

Students cannot take a GRE test anywhere. There are specific testing centers that distribute the GRE, and they do so about 3 times a year in September, October, and April for the United States, but can be variable depending on other countries. Often, the testing centers are located in larger cities, away from more rural areas. The test itself takes about 3 to 3.5 hours, and students are not allowed to bring any snacks or drinks into the testing center with them. These restrictions are variable and can be more or less strict depending on the testing center. 

After the student has taken the test, they receive part of their scores right away. The written portion of the exam is scored by a group of panelists who later give them the score on the written portion. The student then must immediately decide if they want to send those scores to the graduate schools they are applying to. The student doesn’t have to send their scores to any school if they don’t want to or feel like they need to retake the test. If you don’t send the scores at this time, it does cost extra to send them at a later time. Scores are reported on a scale from 130 to 170 in 1 point increments for the verbal reasoning and quantitative reasoning part of the exam, and from 0 to 6 in half point increments on the analytical writing portion.  

Although the student can choose to send their test results to multiple schools, it does cost an additional $27 to send scores to additional schools. As stated on ETS’ website, these requests for additional scores are not refundable, cannot be canceled, nor can they be changed. 

The Data

From the above section, it should be clear that the GRE test is serious business, as it costs quite a bit of money to take, takes a large amount of time, and is largely uncomfortable (seriously, no snacks?!?). The test is supposed to be an indicator of student success in graduate school, but there have been studies published that say otherwise. In addition, there are problems with the test, as it is not an equal predictor of success for men and women, nor among underrepresented groups. In this section, I’ll summarize some of those studies and their major findings.

The GRE as a Poor Predictor of Graduate Student Success

First, let’s start with the obvious assumption that the GRE test does predict success of upcoming graduate students. One of the earliest studies looking at the predictive power of the GRE was by Dunlap (1979). This study found that the best predictor a student success was the student’s performance on the basis of faculty interviews and undergraduate GPA. The GRE was a weak predictor of success. Dawes (1971) showed that GRE scores can be good predictors of grades and faculty evaluations, but only for first-year graduate students’ performance in psychology. Another study by Wood and Wong (1992) showed that the GRE, by itself, accounted for slightly less than 10% of the variation in the criteria of graduate performance against which the GRE was validated. This study also only looked at psychology students. A more recent assessment of student GRE scores as predictors of success in psychology departments was conducted by Sternberg and Williams (1997). These researchers at Yale University asked graduate student advisors to rate their graduate students on their analytical abilities, creative abilities, practical abilities, research abilities, and teaching abilities. The researchers also computed the students’ first-year, second year, and combined GPAs on a scale of 4 (high pass) to 0 (fail). Similar to the Dawes (1971) study, the data from Sternberg and Williams (1997) indicated that the GRE was a modest predictor of grades, but only for the students’ first year in graduate school. The GRE scores were not found to be useful in predicting other arenas of graduate performance, such as analytical, creative, practical, research, and teaching abilities.

Similarly, a study conducted by researchers looked at the predictive power of GRE scores in construction management programs in the United States. The study, conducted by Wao and others (2016) tried to correlate the success of graduate students (success meaning they finished their degree within two years and not drop out). They, too, found that the GRE scores were not correlated with graduate student success, and thus recommended that admissions committees should reassess requiring the GRE scores at all. 

Personal Stories & Experiences

In high school, I was not a great student, and did terrible in math classes (my high school math teacher once told me to get away from his desk when I asked for help because I was ruining the signal on the TV while he watched basketball, DURING CLASS). When it was time for me to take the GRE, I was already working 20-30 hours per week to put myself through community college and help my family with expenses. I had to take a day off of work, paid $200 for the exam, and had to drive 45 minutes to the nearest testing center. I was so nervous about taking the test, I sweat the entire time even though the room was chilly. At the end of my exam, my scores didn’t meet the minimum most graduate programs required (300 points). I ran to my car, crying, and called my mom telling her I had failed. I couldn’t really afford to take the test again, but I did so twice more. I received about the same scores all three times, but in the end, I was out over $600 that I needed for school and my family. Today, I’m a Postdoctoral Fellow, and have personally grown and accomplished so much during my short academic career. No, the GRE was not a predictor of my success, but rather highlighted the fact that I came from an area with subpar high schools and from a family with lower socio-economic status. 

Adriane Lam, Postdoctoral Fellow, University of Binghamton

I an above average high school student, I didn’t significantly apply myself because I was easily distracted and often bored in class. But I did my work, just not to the best of my ability. I never was a strong test taker, and didn’t have excellent ACT scores (25). I went on to a local public institution and really did awful my first year. I was NOT able to coast through like I did in high school. This means I bombed my first year of my undergraduate studies. I spent the next 4 years (I spent 5 as an undergraduate) working to raise my GPA. I graduated with a 2.86 GPA. I have to reiterate that I am a terrible test taker, I get so anxious, my study habits were variable and awful. I struggled. I didn’t know that I could even ask for help until the last few years when I found supportive mentors. I dreaded the GRE, I got workbooks, flashcards, and even recorded myself reciting definitions of terms so I could listen to myself on my commute to work and school. The testing center wouldn’t let me bring in tissues or chapstick and said I could either take in my sweater or I had to take it off because I couldn’t take it off in the testing center. These are all comfort items for me and I felt naked and uncomfortable heading into the testing center. I took the exam and I got an okay score, around 1200 (I took the old version). One of my mentors said I needed to take it again because that wasn’t competitive. So, regardless of the expense, I scheduled another test. I did worse. This was a waste of my time and money, neither of which I had an abundance of. Today, I am a collection manager at an established museum and research institution – regardless of my GPA or GRE scores, I managed to achieve my goals.

Jen Bauer, Ph.D., University of Michigan Museum of Paleontology

My story is from applying to PhD programs in 2013, both involving schools in the top 10 Earth Science PhD programs. At one I was told by the PI I was waitlisted because of my scores (which I can only assume meant my GRE scores, my GPA was a 3.8), only to then be admitted 1 week before the decision deadline after others had declined and I had accepted elsewhere (which was rather embarrassing). I was later told by the (junior) PI that he seriously regretted waitlisting me, which was quite humiliating. The second program was told when I visited informally before applications were due that there was a ‘formula’ involving GPA, quant and writing score that was unofficially used. I was below the threshold, told to retake the GRE before applying, all while trying to finish my MS degree. Knowing there was a threshold I needed was incredibly stressful.

-Anonymous

I actually had a very positive experience with the GRE even if I’m not convinced of its utility as an application requirement overall. I’m also concerned about what standards are replacing it and how inequality is built in those too. Before applying to a geoscience grad program, I was nervous about “belonging” and being successful in the field. I didn’t do science undergrad, I was a little older, and black. Hitting the marks on my GRE helped reassure me that I was in fact qualified and belonged. I’m not sure how much my score actually factored in to my admission. Re the test itself, I bought an inexpensive test prep book (could have got it at library too), took it at a location walkable from my home, easy peasy. Test location was at an HBU so even that was encouraging. Largest drawback for me was the cost of the exam itself. That’s just one experience and if the data says the test is a useless barrier, then I trust the data. I always felt weaker in school on the quantitative side of things. The GRE wasn’t a class. It’s not math I’d apply in my field. It was a nut to crack, something to persevere and figure out. That’s something I do in my PhD, everyday. That’s how the GRE helped me feel ready.

-Shannon Valley

I went to undergrad on a full needs-based scholarship, because my family had no money to send me to college. I worked part time jobs, sometimes more than one during a semester, through all 4 years of college. I wanted to apply to grad school, and spent nearly a month’s pay signing up for the GRE. Unfortunately, in the weeks leading up to the GRE, my grandfather died quite unexpectedly and I ended up needing to reschedule it because my mother needed help cleaning out his house out of state. I had to pay an extra $50 to reschedule (which wasn’t easy to scrape up). It took me over an hour and a half by bus to get to the exam because they didn’t offer the test where I went to undergrad (they still don’t)-they offered it in a city a short distance away, but without a car, I had to rely on public transportation. This added a lot to the stress of the day, seeing as the exam started at 8AM. 

The amount of money it cost me to take this exam left me struggling to afford food, toiletries, and medical bills. I then had to figure out how to pay for the steep fees for the applications themselves. I didn’t know that you could send your scores for free *if* you did it the day you took the exam until I was already taking it. Because of that, I had to resend my scores after the exam for even more extra fees (I want to say $10 per school to send an email with my scores, but I can’t remember what the costs were back in 2010). 

I got into grad school (M.S.) with a relatively low score in the quantitative section. Frankly, between taking 5-6 classes, extracurricular activities, and working (my senior year, I taught a lab section of a course for pay, tutored athletes, and worked as an office assistant in a music department all at the same time), I didn’t have any time to study for the GRE. I used an old copy of the GRE study book from the library when I had a free hour or two, but I didn’t study as much as I could have if I hadn’t been working. 

 I took it again when I applied to a Ph.D. program- I only did this because a mentor of mine told me I’d never get into a Ph.D. program with my quantitative scores (I scored in the 99% in the qualitative/literature section,  but everyone said that didn’t matter in the STEM fields). I, again, had to spend just over two hundred dollars (my monthly take home pay as a student was around $850-$900/month, so this was tough to do, mind you). I had a car this time, but still had to drive an hour each way to take the test. This time, I was able to get a study book that I found from a thrift store and I was able to do a little bit better in quantitative, but not enough that it was worth the extreme stress I went through trying to figure out how to pay for the exam. Today, I’m an assistant professor at a university that has a significant number of low income students and the costs for the GRE have only gone up since I took it, while wages haven’t changed with those rising costs. I want to see a world where my students don’t have to forfeit time to study just so they can save up enough to take the test. 

 –Sarah Sheffield, Ph.D. The University of South Florida 

As someone who grew up taking standardized tests every year starting in 4th grade, I have always been a good standardized test taker, (other kinds of exams not so much, my test anxiety really didn’t start until my undergrad when I felt that my scores would really determine my future) so the idea of the GRE didn’t bother me. At the time, it very much just felt like another annoying step to be able to apply to graduate programs. However, since the exam wasn’t offered in the same city that my college was located in, I had to drive 40 minutes to the exam after my classes ended that day to sit in a freezing cold cubicle with noise cancelling headphones to block out the sound of anxious typing from all the other students taking the exam with me. 

One thing I did appreciate about the exam was knowing my quantitative and qualitative scores immediately after finishing the exam. I knew that my quantitative score would be my lowest (hello, math insecurities) but did hope that it would be a competitive score-an arbitrary number in my head that I had gotten from looking up “acceptable GRE scores for paleontology programs” on Google. My quantitative score was lower than what that number in my head was, but on my way out the door I made the decision that knowing how I test in math and how much better I would need to do to raise that score even a few points was not worth the stress and the $200 to retake the exam. I was 100% comfortable with this decision, but still nervous that my score might deter universities from accepting me for my Master’s. While the scores did not prevent me from being accepted into a Master’s program, I do think that they played a role in some of my rejections from PhD programs because they were schools with strict cut offs on GRE scores. However, I was accepted into a PhD program and have yet to see the need for anything I learned specifically to do well on the GRE. 

Maggie Limbeck, PhD student, University of Tennessee

Additional Reading

Articles/Commentary

Peer-reviewed Literature & References Mentioned

Jarrett McDowell, Fossil Enthusiast

What is your favorite part about being a scientist, and how did you get interested in science in general?

I have almost always been interested in science, ever since I was a little kid. I used to like to do “magic” science tricks at home like putting a bar of soap and pepper in a bowl and showing how I could make the pepper float away from the soap. Science for me was always good at explaining the reason behind why certain things happened the way they did. To be honest, that is my favorite part of being a scientist. I am able to help people know why something is the way it is or at least come up with hypotheses as to why.

What do you do?

I am a teacher and an amateur paleobotanist, a person who likes to study fossil plants. The field of paleobotany is like putting together a big jigsaw puzzle except you don’t know how many pieces your puzzle has, you don’t know if all your current pieces belong to the same puzzle or different puzzles, and some of your pieces have been torn, bitten, or smudged. You seldom find a plant that has been fossilized in its entirety. You usually find a leaf here, a stem there, maybe some roots over there, and a sporangium over here. Chances are each part has also been given its own genus name or species name because the person who found the part did not know if it belonged to one of the other parts. Over time paleobotanists work together to try to link all these parts together and show that they belonged to one plant or multiple plants.

The sporangium of a prehistoric lycopod that was used in reproduction in the Carboniferous.

What methods do you use to engage your audiences? What have you found to be the best way to communicate science? 

I think the best way to teach science is you have to make it relevant to whomever is listening. Children like science because they are naturally curious about the world around them. The question is, how you can you make it relevant to their lives? I loved my soap and black pepper magic experiment because it involved two things I had in my house and I regularly saw. With fossil plants, it’s a bit more difficult but I can still show kids a fossil and then show them the nearest living relative of that ancient plant. The Ginkgo tree is a great example of this because it is a living fossil and many of its ancient relatives have similar leaves that are easily identifiable.

How does your research contribute to the understanding of evolution? 

I have not done any research as of late, but my previous research aimed to clarify evolution of lycopods in North America. Essentially I was trying to show that multiple species and genera of lycopods were all the same plant. This would help in the study of plant evolution and prehistoric ecology because it would help us learn more about the biodiversity that lived in these Carboniferous swamps. From a societal perspective, it’s important because I think it is always good for people to know about the natural history of the land they live on.

What advice do you have for aspiring scientists?

My advice to any aspiring scientist is know that setbacks will happen. Things won’t always go the way you want them to go and that’s perfectly okay. I thought I would go into college, get perfect science grades, and be on to the next stage of my life. I was wrong. I found science classes to be very challenging and my undergraduate GPA showed it, although I was a great researcher and I loved the classes. Because of my not-so-stellar grades, I graduated with my Bachelor’s and tried out other careers because I thought I was not fit for paleontology. I worked as a pharmaceutical auditor for a while then seven years as an ESL/EFL teacher abroad (ESL/EFL- English as a second/first language). I was good at both jobs but I felt unfulfilled because these weren’t careers that I wanted but jobs that I was just good at. This led me to start pondering what I really wanted in life for several months until I realized that I wanted to return to the field of paleontology. After asking around and researching different graduate programs, I settled on one that I wanted to attend. To sum up, my advice is to know that setbacks will happen. You can plan as much as you want but things may not go accordingly.

Integrating Diversity in a Palaeontology Class

Kristina here–

I’ll preface this entire post by saying that I identify as a straight, cis, white woman, and I recognize that I still have a lot of learning and work yet to do when it comes to diversity, equity, and inclusion in all aspects of my professional as personal life

I’ve been involved in diversity initiatives in my department, including organizing a speaker series aimed at addressing gender disparity in my department. In 2016, we lost our only female geology faculty member (out of a faculty of ~50 people). This meant that most of our undergraduate and graduate students would never get the chance to interact or learn from a female role model and professor during their geology degrees. In response, a group of female graduate students launched an initiative to create a speaker series (the Grace Anne Stewart Speaker Series) to bring female geoscientist experts to the department so that students still had the chance to interact with and learn from female role-models and world-class experts in geoscience. Fast forward to today, and several women have been hired as faculty in the department, and we have expanded the series to directly address representation of other groups, specifically racial, and mental or physical disabilities. It has been a rewarding and challenging experience, and I have learned so much. So when I had the opportunity to teach a class of my own in the department, recognizing I might still be one of the only female teachers they might have during their degrees, I wanted to try and incorporate some of these lessons and experiences into the classroom.

Data from Bernard and Cooperdock (2018), showing who was awarded geology PhDs in the United States since 1973.

Integrating Inclusion into the Curriculum

The class I taught was Introduction to Invertebrate Palaeontology – a required second year class for geology and palaeontology majors. For most, this class was either the first biology, or the first palaeontology class of their degrees. I already had some course materials available from the previous instructor, and our course syllabi and learning objectives had to be approved by our department. So how was I to include a new topic that wasn’t necessarily “integral” to the course goals? It was really easy! I just included diversity as a course topic and created an extra credit assignment! I also included a diversity statement in my syllabus. For a nice example of a diversity statement to include on your syllabus, see this example by Dr. Rowan Martindale (University of Texas Austin).

In terms of class time, I dedicated about 5 – 10 minutes once a week to a diversity in geoscience topic. I showed the students some recent research and statistics on diversity in geoscience, introduced some of the terminology used (e.g., representation, intersectionality, implicit bias), and shared data from a paper by Bernard and Cooperdock (2018), which gives breakdowns of the number of Ph.D.’s awarded by race and gender in the U.S since 1973, showing little progress towards achieving diversity in 40 years. Another awesome topic I was able to include by chance was showing the class a documentary that was being offered for free on International Women and Girls in Science day. The Bearded Lady Project made a 22 min doc about challenging the stereotypes of what a palaeontologist looks like. The documentary interviews female palaeontologists about their experiences and some of the discrimination they have faced in their careers or in the field. I showed the short doc in class and then gave the students a chance to discuss some of their thoughts on the documentary. The class really enjoyed it!

Showcasing Diversity with “Student Choice” Extra Credit Assignments

I created an extra credit assignment to encourage students to learn about geoscientists who have made important contributions to the field, but perhaps haven’t received the attention or recognition that others have, such as Charles Darwin, Richard Owen, or Charles Lyell. I asked students to tell me about “non-traditional” (as in, not straight white men) scientists they felt were important role models or had made important contributions to science. I tried to leave the assignments as open-ended as possible so that students could be creative with their choice of person (e.g., could be living or dead), but just asked they include 3 – 5 facts, a picture of the person or their research topic/discovery, and their references. They could turn in the assignment as a document or slide, and if they gave me permission, I would then share it with the class. I also said that each week, I would present a choice of my own if no one handed in an assignment. This was to try and encourage the students to hand in assignments earlier in the term before their choices were selected by myself or another student. It also allowed us to plan to showcase certain scientists during important relevant events, such as Black History Month, and Pride Week.

The idea of this assignment was to encourage student creativity, expose students (and myself) to new and/or important faces and discoveries in science, and allow us all the opportunity to learn something new about the history of our discipline. Importantly, I wanted this to be a student-driven list. I wanted to know the students’ perspectives on who they thought were important people in geoscience and palaeontology. For copyright and security reasons, I won’t include student names or their assignments, but I will offer the names and a bit of info on some of the people the students and I chose to highlight (in no particular order):

      1. Geerat Vermeij – Dr. Vermeij is one of the world’s leading palaeontologists and experts in malacology (the study of molluscs) and predation. He is a professor at UC Davis, and has won numerous awards for his ground-breaking research, including a MacArthur Fellow. He has published several books (in addition to hundreds of peer-reviewed scientific papers), including Privileged Hands, and A Natural History of Shells, which are great reads for scientists and non-scientists alike! Dr. Vermeij has been blind since the age of three, but still conducts both field and lab research. I chose Dr. Vermeij as an example for the class of the kind of scientist they might choose, as I admire Dr. Vermeij’s research.

        Dr. Geerat Vermeij. Source – geology.ucdavis.edu
      2. Mary Anning – Known as the “mother of palaeontology”, Mary Anning was a fossil hunter in 19th century Britain. Her discoveries include the first Plesiosaurus, ink sacks in belemnites (cephalopods), the first British pterosaur, and was the first to attribute coprolites as faeces. Despite all of her knowledge and contributions to the field, she was not allowed to join the Geological Society of London because she was a woman.

        Mary Anning portrait by B.J. Donne
      3. Franz NopcsaNopcsa was a 19th century Transylvanian aristocrat, palaeobiologist, explorer, and ethnographer, and was open about his homosexuality, traveling with his partner, Bajazid. He was a pioneer in the field of palaeobiology, and came up with the concept of Island Dwarfism. He was also an early supporter of plate tectonics and the evolution of birds from dinosaurs. Unfortunately, he was faced with financial difficulties and physical illness which led to him tragically killing Bajazid and himself.

        Baron Franz Nopcsa
      4. Florence Bascom – Dr. Bascom was the first woman to receive a Ph.D. from Johns Hopkins University in 1893, and only the second American woman to receive a Ph.D. in geology. Dr. Bascom went on to be the first woman to work for the U.S. Geological Survey (USGS), first woman elected to the council for the Geological Society of America (GSA), and founded the geology department at Bryn Mawr College in Pennsylvania.

        Florence Bascom
      5. Tilly Edinger – Dr. Edinger was the founder of palaeoneurology, the study of the relationship between braincases, skulls, and the brain. She earned her Ph.D. from the University of Frankfurt in 1921. Dr. Edinger achieved much during her career, and won numerous awards and recognitions for her contributions to palaeontology. She also served as the President of the Society of Vertebrate Palaeontology (1963 – 1964). As a Jewish woman in Germany during WWII, she had to work in secret, and eventually fled to London, and then the U.S., where she spent the rest of her career. To learn more about Dr. Edinger’s life and legacy, please visit our Who is Tilly Edinger page, and consider donating to our Tilly Edinger Travel Grant for students and avocational scientists!

        Tilly Edinger
      6. Louis Purnell – Purnell was the first African American curator at the National Air and Space Museum. However, before working at the National Air and Space Museum, he worked as an invertebrate zoology specialist and expert in fossil cephalopods at the Smithsonian Natural History Museum, but experienced a lot of racism and academic jealousy at the museum and was passed over for promotions, and he left for the National Air and Space Museum.

        Louis Purnell (Smithsonian Institution Archives)
      7. Lisa White – Dr. White is the Assistant Director (Education and Outreach) at the University of California Museum of Paleontology. She is a micropalaeontologist and geoeducation expert, and has been instrumental in directly tackling issues of racial diversity and geoscience education opportunities for minorities. Dr. White has run several programs, including SF-ROCKS which supports geoscience outreach to children and minorities communities in San Fransisco, and has won GSA’s Bromery Award for education and service work advancing minorities in science.

        Dr. Lisa White (ucmp.berkeley.edu)
      8. Bolortsetseg Minjin – A world-renowned leader and advocate for Mongolian palaeontology, Bolortsetseg Minjin has been instrumental in protecting Mongolia’s fossil heritage, addressing fossil poaching, and providing palaeontology education opportunities to Mongolians. She founded the Institute for the Study of Mongolian Dinosaurs, and has won numerous international awards for her work, including a National Geographic Emerging Explorer and Ramond M. Alf Award.

        Bolortsetseg Minjin (Thea Boodhoo)
      9. Cameron Muskelly – I included Mr. Muskelly as an example of a young avocational scientist who is making amazing strides in palaeontology and outreach, and is an advocate for not only Black geoscientists, but those with mental disabilities and autism in science. Mr. Muskelly has accomplished much for education and outreach in geoscience and palaeontology in his home state of Georgia, and recently won the Katherine Palmer award from the Paleontological Research Institution for his outstanding contributions to the field as an avocational palaeontologist. Read more about Cam on Time Scavengers on his Meet the Scientist blog post!

        Cameron Muskelly
      10. Riley Black – Author of the books My Beloved Brontosaurus, The T. rex Handbook, and Skeleton Keys, Black is a well-known popular science and palaeontology writer. In 2019, Black came out as transgender, and has been an advocate for LGBQTIA+ voices in palaeontology, writing an article called “Queer Voices in Paleontology” for the journal Nature, which outlined the challenges faced by queer palaeontologists, as well as her personal experiences on the struggles of transitioning and fieldwork. Read more about Riley on Time Scavengers on her Meet the Scientist blog post!

        Riley Black (@TheSplash)

I’ll end by saying that I have a lot more growth I’d like to do in terms of being a better ally and advocate for diversity in science, but this was a really fun and rewarding experience that the students and I really enjoyed, and I would definitely do again. One additional resource that I have found really helpful is this recent article by Dr. Christy Visaggi: Equity, Culture, and Place in Teaching Paleontology.

Dr. Rachel Lupien, Paleoclimatologist

Rachel working in the organic geochemistry lab.

What is your favorite aspect of being a scientist? How did you become interested in science?

My favorite part about being a scientist is learning something new every day. We get to ask and answer questions; some experiments are very large and involve many people and many years, and others are accomplished just by graphing our data in a new way. We also get to learn from our friends and colleagues, and from papers, talks, and lessons of the community. I really like my job because it is a great mix of field, lab, and computer work. I’m never bored, although some tasks are definitely tougher for me than others. Field work, conferences, and short courses have brought me all over the world, and this sort of travel is so exciting.

I’ve always looked for how to apply the things I’ve learned. I was good at math in school, but to me, applying those math skills to scientific questions was always more interesting. I thought I wanted to be a chemistry major at the beginning of college, but the Earth sciences incorporated the application of math, chemistry, physics, and biology to topics like volcanoes and earthquakes and climate change. I then studied geology, really digging into how the Earth moved over billions of years, but now I have further applied my scientific background to a topic that I find is absolutely crucial for us as a society to understand: climate change.

Rachel in Norway, where she was taking a sediment core from a lake.

What do you do?

I study the natural variations of climate in Africa over many millions of years to understand how environmental change drove human evolution. I analyze rainfall, plants, and other climate parameters by studying fossil molecules that are transported from land, buried, and accumulated over time in lake and ocean sediment. I then quantify the climate patterns over different time scales, and attempt to understand the relationship between our human ancestors (hominins) and their environment. I also make links with global climate changes to understand the sensitivity of the African environment to changes in solar radiation, greenhouse gases, ocean circulation and temperatures, and glacial-interglacial cycles. The past is the key to the future, and these connections will help us understand how this historically under-studied continent will respond to current and future global warming.

What are your data, and how do you obtain them?

Rachel holding the real skull of a baby ape, named Nyanzapithecus alesi. This fossil is 13 million years old!

I am an organic geochemist working mainly with leaf wax biomarkers. These waxes (the shiny coating) are produced by plants to protect them from excess evaporation and physical damage. Eventually the waxes are transported to the bottom of a watershed, like a lake or the ocean, and preserved in the sediment. They are preserved because the waxes are comprised of long organic molecules, meaning a bunch of carbon and hydrogen atoms arranged in a row, which makes them resilient to weathering or degradation. Over time the waxes are preserved along with the lake/ocean sediment as it accumulates, and we go and take cores from these archives. We split open the sediment cores and do a long series of geochemical extractions in the organics lab. Finally, I measure the isotopes of both the hydrogen and carbon atoms in the leaf waxes, which are proxies for precipitation amount and plant type, respectively. I then plot these isotope data versus depth or age to understand how the climate changed over time, and do quantitative analyses to understand the cycles, shifts, and amplitudes of variability in the climate system over million-year, millennial, and centennial time scales.

How does your research contribute to the understanding of climate change and evolution?

I study and teach about past, current, and future climate change and the effects of climate change on evolution. Our human ancestors (and other animals) lived and depended on their environment, which was likely driven by natural oscillations in the climate system. By understanding environmental responses to climate, we can test various theories about the link between ecosystems and human evolution. This work gives us a better idea not only of how resources (habitat, food, land use) will change with future global warming, but also what characteristics of climate change human populations are likely to respond to. The rate at which the Earth is currently warming and changing is very important to understand when thinking about the human response, and reconstructing climate change in the past on these shorter time scales is something that I’m interested in focusing on in the future.

What advice do you have for aspiring scientists?

Rachel in Kenya, teaching a field course.

Disseminating your scientific findings is so important. If you put in a lot of work to your research, but can’t let the world know what you found, it’s not helping the public to its maximum potential. I was always such a math/science kid, even through college, and I didn’t realize the importance of being a creative, focused, clear, interesting writer. My advice for aspiring scientists would be to read and write often and to work on these as skills. No matter what scientific profession you end up in, including academia and industry, you will need to write succinctly for a wide audience. But no fear! I used to think I was a terrible writer and I really didn’t enjoy it, but it is something that I’ve practiced and improved upon over time.

Rachel is a postdoctoral research scientist at Lamont-Doherty Earth Observatory. To learn more about her and her research, follow her on Twitter @loopdlupien or visit her website here.

 

Devonian of New York: Schoharie and the Helderberg Group

Adriane here–

When I was a PhD candidate at UMass Amherst, I was the teaching assistant for our geology department’s Historical Geology class. Every spring, weather permitting, we would take our students on a weekend field trip to upstate New York, to visit rock formations and outcrops that were of Ordovician to Devonian (~450 to 385 million years ago) age. These outcrops and rocks contain abundant fossils, but there was one outcrop in particular that I always found to be the most fascinating: the Middle Devonian rocks exposed near Schoharie, New York.

Now that I am a postdoc at Binghamton University, I’m only about 1.5 hours away from this incredibly cool outcrop! A few weekends ago, my husband and I decided to take a short road trip to go fossil collecting here, as it was the perfect activity to do during a pandemic (limited to no interactions with other people, ample outside time, but also close enough to home). Unfortunately the day was incredibly hot, and we were only able to stay for about half an hour before we felt as if we were roasting. Regardless, we brought home so cool finds, namely a slab of invertebrates, some brachipods, a horn coral, and a sponge!

The outcrop exposed near Schoharie is well-known to local fossil and mineral clubs and fossil enthusiasts. The location is secluded and quiet, there is a long and wide shoulder for parking, and the outcrop itself is set off the road a bit, which is great for students and kids! The outcrop itself is located on Rickard Hill Road, just east of the town of Schoharie.

Google Map of Schoharie, New York, with the location of the outcrop denoted by the yellow star.

The rocks here are part of the Helderberg Group, which are composed of limestones that were deposited in a shallow sea during the Middle Devonian. There are three rock formations that are present: the Coeymans Limestone, Kalkberg Limestone, and Becraft Limestone. The Coeymans Limestone is the oldest formation here. It is a medium to coarse grained limestone which is massively bedded, meaning the rock layers, or beds, themselves are quite thick. Fossils are present in this formation, however, because the formation is massively bedded, the fossils are hard to get out of the rock and are less easily eroded.

An image of the Rickard Hill Road outcrop. The Kalkberg Formation is the rock that makes up the slope of the outcrop which you can walk on and collect fossils. On the right side of the image, the small cliffs are mainly composed of the Becraft Limestone. Image from http://bingweb.binghamton.edu/~kwilson/Devonian/DevSites/Schoharie/Schoharie.htm

The Kalkberg Formation lies above the Coeymans, and is described as a thin to medium bedded limestone. This means the individual rock layers within the formation are smaller and not as thick as those observed in the Coeymans Limestone. This formation also contains shale layers, a very fine-grained rock. This formation was likely deposited in a deeper-water setting than the Coeymans Limestone. Several different species and types of fossils are found in the Kalkberg, including animals such as corals, conularia, bryozoa, crinoides, brachiopods, trilobites (which are very rare), bivalves, gastropods, and even straight-shelled cephalopods. When you get out of you car at the outcrop, the Kalkberg Formation is what you are walking on!

 

My pentamerid brachiopod from the Becraft Formation. The lines visible on the surface are from glaciers that flowed across this brachiopod, which was cemented into the rock!

The Becraft Formation is the youngest of the three formations exposed at the Schoharie outcrop, and sits atop the Kalkberg Limestone. Similar to the Coeymans Limestone, the Becraft is a more massively bedded, coarse-grained limestone that was likely deposited in shallower waters than the Kalkberg Limestone. Because this formation is more resistant to weathering, it forms the small cliffs at the outcrop location. This formation contains fossils, but again, because it is more massively bedded, the fossils are not always as easily eroded out from the rocks. Other collectors have found fossils such as crinoids, brachiopods, gastropods, and bivalves.

One of the things I absolutely love about the Becraft Formation is that it contains glacial striations at the top of the cliffs! Glacial striations are grooves left in rocks when the glaciers covered much of northern North American about 15,000–20,000 years ago. Striations are commonly found on metamorphic, sedimentary,and igneous rocks, and help geoscientists know which way the ice flowed. But that’s another fun story for later. One of my all-time favorite fossil finds came from the top of the Becraft Formation: a pentamerid brachiopod that was carefully sliced in half by glaciers, that contains glacial striations! The brachiopod was likely preserved as a whole specimen with two valves, much like a clam has two parts to its shell. The glaciers eroded just enough of the formation and brachiopod to cut it perfectly in half. Incredible!

A slab of limestone containing quite a few fossils, including brachiopods, bryozoa, and bivalves!

If you are in the area, I highly recommend stopping at the Rickards Hill Road outcrop and visiting the Helderberg Group. Collecting here is fun for all ages, is open to the public, and fossils are almost guaranteed 🙂

Additional Resources

Fossil digs in Upstate New York: 5 Good Places to Search
Lower Devonian Fossils near Schoharie, NY
USGS Helderberg Group 

 

 

 

 

 

Arsum Pathak, PhD Candidate & Climate Researcher

Collecting geospatial data on Cable Beach, Nassau, The Bahamas.

What is your favorite part about being a scientist, and how did you get interested in science?

Being a scientist feeds my curiosity for the real world around us. As a climate researcher, I combine natural and societal systems in a social-ecological approach to explore a complex global issue – climate change. The more I learn about the interlinkages of the natural and social systems, the more I realize about their synergies, and the more fascinated I am by the world around us. And the fact that I get to travel to beautiful places definitely helps!

I have been interested in science ever since I can remember. From a young age, I enjoyed learning different subjects, however, science always seemed the logical choice for me. It constantly stimulated my curiosity and interests leaving a thirst for learning more that continues till date. Over the years, science has shaped me to be a logical thinker and problem solver and my love for the subject grows each day.

What do you do?

Example of hard infrastructure for coastal protection, Nassau, The Bahamas.

My research interest lies at the science-policy interface with a focus on climate change, sustainable development, and Small Island Developing States. I am particularly interested in exploring climate adaptation that is synergistic with the broader Sustainable Development Goals (SDGs) of the coastal economies. My dissertation research employs a holistic theoretical lens of social-ecological systems that combines ecological and societal systems with the conceptual frameworks of vulnerability and resilience to guide climate adaptation and sustainable development. To understand these cross-cutting and complex concepts, I use a mixed-methods approach with a combination of quantitative and qualitative methods for data collection and analysis.

What are your data, and how do you obtain them?

I use both primary and secondary data in a mixed-methods approach. For writing my dissertation, I utilized geospatial data, surveys, and interviews combined with secondary policy and planning documents to answer my research questions.

Overwater villas in a Maldives’ resort where average elevation is less than a meter.

How does your research contribute to the understanding of climate change and the betterment of society in general?

Through my research, I aim to understand the ways how coastal communities will evolve and adapt in the face of future climatic change, particularly, rising sea levels and storm surge. My broader goal is to look for practical and creative solutions for climate adaptation that also supports the sustainable development of coastal areas.

Arsum is a PhD candidate at the University of South Florida. To learn more about her and her research, head to her website here

Counting Deep Sea Sediments

Adriane here–

As paleontologists and paleoceanographers, sometimes the analyses we do involve complex equations, time-consuming geochemistry, or large amounts of computational time running models. But every now and then, we gather data using a method that is simple and fast. Today, I want to talk about one such method that I use quite often in my research. These data are called biogenic counts.

In previous posts, I’ve written about the deep-sea sediments I use in my research, such as sampling the cores we drilled from the Tasman Sea, and processing these samples once they are back in the lab. Each sample, which is stored in a small vial and represents 2 cm of the core (or 10 cubic cm of material), contain pieces of hard parts of plankton and animals, as well as minerals. These minerals and biogenic pieces, then, can tell us about our oceans and the life it held millions of years ago.

Biogenic count data is just that: I dump the sediment samples onto a tray and count the number of ‘things’ that are in that sample to determine the percentage of each ‘thing’ there. ‘Things’ in the sediment fall into a couple different categories: benthic foraminifera (foraminifera that live on the bottom of the seafloor), planktic foraminifera (foraminifera that float in the upper part of the water column in the open ocean), echinoderm spines (the hard parts of things like star fish and sea urchins), foraminifera fragments (pieces of foraminifera shell that are broken), sponge spicules (the hard parts of sponges that look like spiked glass), and I also make note of any minerals that are found in the sample. In one day, I do about 10 samples, which doesn’t seem like much but adds up everyday!

Below I’ll go  over the exact steps I take when performing biogenic counts:

A) An image of one of my jarred samples. B) The microsplitter used to split samples. Notice that the sample being poured in is split between the two cups on either side.

First, I take the jarred sediment and split the sample using a micro-splitter. A micro-splitter is a tiny contraption that equally ‘splits’ the sediment into two holders. Because each sample contains tens, maybe even hundreds of thousands of particles, there’s no way we could count all of that! So instead, splitting the sample down to a reasonable number of particles allows us to more accurately and quickly count the number of particles in each sample, which we can then use to get a percent of each ‘thing’ (e.g., benthic foraminifera, fragment, echinoderm piece) in each sample.

Generally, I try to split the sample until about 300 particles remain in one of the cups. This can take splitting the sample anywhere between 3-9 times, depending on how much sediment is in each sample to begin with. Once I have the ~300 particles, I then sprinkle them evenly onto a picking tray (a metal tray with a grid on it). I then count the number of each ‘thing’ on the picking tray. I keep count of each ‘thing’ using a counter, which makes the process very fast and easy!

An image of my picking tray with the sample sprinkled on it. Some of the major components, or ‘things’, in the sediment are labeled. Most of them are planktic foraminifera, which can be very small or larger. There are a few benthic foraminifera, several fragments, and only one piece of an echinoderm spine. Generally, planktic foraminifera are most common in these samples.

Once I have this information, I then put them into a spreadsheet to plot the data. One thing I haven’t mentioned yet is, why we do this and gather the biogenic count data. It’s actually very useful! We can use the percentages of each ‘thing’ in the sediment to calculate the ratio of planktic to benthic foraminifera. This tells us something about dissolution, or if the bottom waters were corrosive and dissolved the fossils, as benthic foraminifera are a bit more resistant to this corrosion than planktic foraminifera. I also calculate the planktic fragmentation index, which is another ratio which also indicates dissolution (the more dissolved a foraminifera is, the easier it is to fragment).

Thus, the biogenic count data is a quick but extremely useful method to determine the percent of each ‘thing’ in a sample, which can be used to infer something about the corrosive nature of bottom waters, which in turn can tell us something about ocean circulation from millions of years ago!

 

 

 

Curating a Personal Fossil Collection

Cam here –

Cretaceous Fossils from Mississippi (Part 1)

Fossil collecting can be fun and a rewarding experience. It helps us get a perspective of how rich and diverse the fossil record is. Some of us make personal collections of the fossils we find. Collections typically start with fossils and other rocks mixed together with little to no record of where the specimens you collected came from. My way of collecting fossils has changed over the years as simply piling rocks on my bed headrest to buying drawers and cabinets to store the specimens and keeping a record of them by creating a log book and keeping label cards with every specimen in each drawer. There are many different ways to curate your collection. At the end of the day, it is all up to you.

Fossil Collections (Part 3), (Echinodermata, Blastoidea), (Row 2)

When creating a collection or collecting fossils, you want to make sure you know exactly where that fossil came from. Location is probably more valuable than the fossil itself. You can’t always rely on your memory. What I have done is printed out labels and write information down with a black ink pen. There are about 30 labels on each sheet so I have a good amount. I write additional information on the back such as the date, coordinates (if accessible) and more recently the drawer name in which that specimen is stored. It is OK not to have information about your specimen. You can always leave the location section with a question mark or “Unavailable”. Make sure you fill it out the card with information to the best of your abilities.  

Filled in label

Finding things to store your specimens in depends on how delicate and how large the specimens are. Large to small boxes with padding are good things to have. You can find these boxes at hobby shops and arts and crafts stores. Clear jewelry and bead bags are also very useful as well. With all of these boxes and bags combined I keep most specimens in cabinets and drawers. I label each drawer sometimes by location, age, phyla, or by fossil content. It is all up to you. The majority of my drawers are ClearView desk organizer drawers. You can find these at a Walmart in the craft sections and craft stores.

Organizing a collection can be fun but it can also take up space. Make sure you do have room and not stack things too much on top of each other. I have had almost half of my collection collapse on me for doing that. Have fun with it!

Labeled ClearView drawers