Sam Miller, Hydrologist

What is your favorite part about being a scientist and how did you get interested in science in general?
I enjoy exploring in the field to help find clues that support our theory and understanding of how our world works and using that experience to formulate better hypotheses and tests that will push the science forward. Our world is a fascinating place with endless opportunities to learn. Learning is humbling (“The more I learn, the more I realize how much I don’t know” -Einstein).

In laymen’s terms, what do you do?
I study streamflow generation in mountain environments of the western U.S. Or how snow(melt) becomes (stream)flow. Learn more about streamflow and the water cycle by clicking here. Mountains of the world have been termed ‘water towers for humanity’ due to the variety of downstream users reliant on water that originates as high-elevation snowpack. Population growth and migration combined with a warming climate is putting additional stresses on water resources originating from mountain snowpack, thus it is critical we have a thorough knowledge of how and where our streamflow originates.

There are a variety of approaches and scales used to study hydrology. I generally work at the watershed scale to perform stream gaging and measure natural tracers of the water cycle (electrical conductivity and water isotopes). Combining stream discharge and tracer data allows you to separate streamflow into different origins. Learn more about the field of hydrology by clicking here.

How does your research contribute to the understanding of climate change?
When temperatures warm, mountain snowpack begins melting earlier in the year. Earlier snowmelt and subsequent streamflow response has a variety of consequences ranging from biological impairment associated with changes to the natural flow regime to shifts in the timing and magnitude of water available for downstream reservoirs and irrigation. Importantly, earlier snowmelt often results in lower summer streamflow which can have detrimental effects in arid regions with an increasing demand for water. Part of my research aims to identify areas where this earlier shift in snowmelt is having the most adverse effects on summer streamflow by conducting an empirical, retrospective analysis from hundreds of stream gages in the western U.S.

What are your data and how do you obtain your data?
I use a combination of data I collect myself from field work in the Snowy Range of Wyoming, streamflow data from the United States Geological Survey (USGS), and snowpack data from the Natural Resources Conservation Service (NRCS). The USGS and NRCS data can be easily obtained from packages in R (‘dataRetrieval’ and ‘RNRCS’) but is less satisfying than digging 10 feet to install your own data loggers.

What advice would you give to young aspiring scientists?
I would advise young aspiring scientists to become proficient in a programming language (preferably several) as soon as possible. As computing power and data continue to grow, it is important that we make efficient use of our time. Also make sure you do not lose sight of the passions that drove you to pursue your career in the first place.

Robert Ulrich, Biogeochemist

What is your favorite part about being a scientist and how did you get interested in science in general?
My favorite part about being a scientist is being able to pursue the questions that pop up in my mind about how the world works and having the ability to share what I learn with others.

I got into science because I was always curious: I always wanted to know what everything was, how everything worked, and why everything is the way it is.

In laymen’s terms, what do you do?
Currently, for my first project, I study the different ways that marine animals make their shells/skeletons affect how they record their growth conditions. My second project will be looking at how a widely-used crystallization method affects this in a lab setting.

How does your research/goals/outreach contribute to the understanding of climate change, evolution, paleontology, or to the betterment of society in general?

Research: My research will help us better understand how the proxies people like paleoclimatologists use are recorded in biominerals. My research will also help us to better understand the different ways that these animals are forming their biominerals.

Goals/Outreach: My life experiences and activism thus far have motivated me to cultivate a career in academia. Growing up biracial and needing to navigate the boundary between my two backgrounds and growing up queer in a catholic household have taught me the lesson that I need to create my own space if I want to truly feel comfortable. As a graduate student, I have created spaces for myself as well as others from marginalized groups (i.e., Queers in STEM, The Center for Diverse Leadership in Science). I want to continue advocating for diversity and inclusion in STEM by challenging stereotypes of who is successful, and I believe that becoming a tenured professor would put me in an influential position to not just create spaces, but a position to effect the current culture at all levels: classrooms, departments, universities, academia, and policy.

Rob in the lab!

What are your data and how do you obtain your data?
My lab specializes is carbonate “clumped” isotopes. Measuring clumped isotopes measures the abundance of carbon-13 and oxygen-18 bonded to each other throughout the crystal lattice of the calcium carbonate shells. Ideally, this proxy correlates with and only with the growth temperature of the crystal and does not require knowing the isotopic composition of the growth medium. We are also able to measure the abundance of carbon-13 and oxygen-18 isotopes in the samples, which can also be used as proxies.

For my research, the samples for my first project are crushed shells/skeletons of a range of marine organisms that were grown in culture at the same conditions. This was additionally done at a range of atmospheric carbon dioxide concentrations to simulate the effects of ocean acidification. For my second project, we have synthesized amorphous calcium carbonate in the lab. This is typically done via flux (mixing two solutions to achieve saturation). We are then measuring the carbon-13, oxygen-18, and clumped isotope values of the samples while they are amorphous as well as at different points through the transformation. I believe may also test different ways of transforming the material!

What advice would you give to young aspiring scientists?
My advice to young scientists would be to not be okay with how things are or just “deal with it.” If you are the only person like you in your classes or program, that is not okay. I don’t say that to discourage, but to motivate effecting change.

Follow Rob’s updates on his website, Twitter, and Instagram! Also, in addition to Rob’s amazing research he is an active advocate for underrepresented groups in STEM.

Dr. Laurie Brown, Geophysicist and Paleomagnetist

Dr. Laurie Brown getting ready to drill a 2.5 million year old lava flow in southern Patagonia, Argentina.

How did you become interested in science?

I always enjoyed the outdoors, growing up outside a small town in upstate New York.  Camping trips with my family took me to many national parks and the wonders of the Western US.  In 8th grade I had a great Earth Science course, which I loved, but I somehow did not connect it as a career path.  I went off the Middlebury College in Vermont to enjoy the mountains and skiing, but majored in Math because it was easy for me.  By Senior year I decided to take a Geology course as an elective (because I liked mountains) and by the second week I was hooked!  It was initially the idea of working outdoors in wild and scenic places that attracted me, but I soon learned there were wonderful scientific problems aplenty.  It was 1968 (yes, I am of that generation!) and the concept of Plate Tectonics was just emerging.  Luckily, I had a wonderful professor teaching the year sequence of Physical and Historical Geology and he brought into class the latest scientific discoveries and made the course exciting and provocative.  He also encouraged me to go to Grad School with my one year of Geology, but lots of Math, Physics, and Chemistry, and the rest is history!

What do you do?

I have been a University professor for 45 years, the last 5 as Emeritus.  Being a professor at a major research university means you do many things, all at the same time!  I taught courses in Geophysics at the undergrad and grad level, as well as other courses needed by my department including Oceanography, Field Methods, Field Mapping, Physical Geology, and Tectonophysics.  I mentored students at all levels, both those in my classes and those working in my lab.  I ran a research program including Masters and PhD students where we worked together both in the field and in my paleomagnetism laboratory.  And, as is common in academia, I did a considerable amount of service for my department, my university, and my profession.

Paleomagnetic cores from Patagonia, cut and labeled, and ready to be measured!

What is your research?

I study the Earth’s magnetic field as it is recorded in earth materials- the field of paleomagnetism.  When rocks form – igneous, sedimentary or metamorphic –they are able to retain a record of the current magnetic field within magnetic minerals (magnetite and hematite primarily) in the rock.  Samples can be collected from these rocks millions of years later and the original field measured for both direction and magnitude.

Field aspects of my research involve collecting oriented samples from in situ outcrops and locations.  Currently I work mostly with hard rocks, both young volcanic flows and ancient metamorphic rocks.  I drill samples from these units using an adapted chain saw with a 1 inch diamond bit, water-cooled to preserve the diamonds.  Usually 8-10 cores are drilled at each site (lava flow or outcrop) and all are oriented in place with a sun compass.  This produces many samples; my current project in southern Patagonia involves 120 separate lava flows, and over 1000 cores!  Paleomagnetic studies also can be done on sedimentary rocks, also drilled in the field, and on lake and ocean cores, where samples are collected from the sediment once the cores are split open.

Measuring basalt cores on the cryongenic magnetometer in the Paleomagnetic Lab at the University of Massachusetts Amherst.

Laboratory measurements are performed on a cryogenic magnetometer in my Paleomagnetism Laboratory here at UMass.  It only takes a few minutes to measure the magnetization in a single sample, but a number of tests for stability and reproducibility are required before the data can be interpreted.  Samples are demagnetized in a step-wise fashion using either high temperatures (up to 700°C) or alternating magnetic fields.  We often measure other magnetic properties of the samples, including magnetic susceptibility (measured both in the field and on lab samples) and hysteresis properties.  Microscopic work or SEM studies help us to identify the carriers of the magnetization.

Current Projects.  I am working at both ends of Earth history as current projects include a major study of paleomagnetic directions from young (< 10 myrs) lava flows from southern South America.  These rocks are being used to investigate how the Earth ’s magnetic field varies in the Southern Hemisphere over the last 10 million years.  Other projects are looking at very old rocks in northern Canada where I study the variations in magnetization in a piece of ancient lower crust, now exposed at the surface, and studies of 900 million year old intrusive rocks in southern Norway that are helping us reconstruct the Earth at a time when all the continents were together in a supercontinent called Rodinia.

Magnetic susceptibility meter on a 1.8 billion year old dike intruding 2.2 billion year old metamorphic rocks, Athabasca Granulite Terrane, northern Canada.

How does your research contribute to climate change and evolution?

Paleomagnetism is able to contribute to studies of climate change, evolution, and the history of the Earth by providing additional methods to both correlate sequences and unconnected outcrops, and by providing additional information on geologic age.  The geomagnetic time scale of normal and reversed polarities is well established, and using this magnetostratigraphy enables us to date sedimentary sequences, and to identify similar sequences in other locations.  Measuring the paleomagnetism of deep-sea cores is so well established that the large drilling ships have on-board magnetic laboratories.  Although I am not doing this kind of magnetic work at present, many other labs are, providing important constraints on the timing and correlation of climatic proxies and many parts of the fossil record.

What is your advice for aspiring scientists?

Persevere!  Find that special part of geoscience that intrigues you and work hard to be the best you can at it.  Take all the various opportunities that are available to you, and see where you go!  There will be ups and downs, but as a career the Geosciences provide many positive and productive possibilities.  With over 50 years of activity in the Geosciences, I can easily say I have never lost my joy of working with and on the Earth and the many interesting problems and challenges it provides.  You, alone, may not solve all the problems facing our planet, but you will greatly contribute to our knowledge of the Earth – its evolution, its history, and its constantly changing environment.  And, along the way, you will interact with a number of other awesome scientists, get to see much of the world, and provide a rewarding and enjoyable career for yourself.

Dr. Benjamin Gill, Geochemist

Fieldwork in the Clan Alpine Range of Nevada. This work was part of an NSF funded study on the changes in paleoceanography in response to climate change during the Early Jurassic.

What is your favorite aspect about being a scientist, and how did you become interested in science?

What I love most about being a scientist is being able to follow my curiosity. It’s a privilege to be able work on things that I’m genuinely excited about. I’ve always been interested in the world around me. This probably was first sparked by outdoor trips (camping, hiking, etc.) that my dad took me on when on I was a kid. Specifically, I got interested in geology because my childhood best friend’s dad is a geologist. He took us on trips to collect rocks and minerals; I liked it and my friend was let’s say less enthusiastic about it.

Field work on the Middle Cambrian Wheeler Formation in the Drum Mountains of Utah. This study was to examine the environmental conditions that led to the preservation of an exceptional fossils deposits in this formation.

As a scientist, what do you do?

I study the history of environmental change on our planet in order to determine what was behind this change and its consequences. I mainly do this by looking at the chemistry of the sediments and rocks that were deposited/formed during these time intervals. The chemistry of these materials allows us to reconstruct chemistry of the oceans and atmosphere in the long-distance past.

What data do you use in your research? 

Much of my research involves working with geochemical data obtained from sediments, fossils and sedimentary rocks. Specifically, in our laboratory at Virginia Tech, we have instruments that can measure the amount and the isotopes of (atoms with the same number of protons but different numbers of neutrons) carbon, oxygen, nitrogen and sulfur. However, my students and I don’t just stick to the laboratory — we frequently go into the field to collect samples. In fact, this summer we will be out in Nevada and Alaska collecting samples and data in the field.

Field team for 2018 for our study of the end-Triassic mass extinctions in Alaska. Front row, left to right: Jeremy Owens (Florida State University), Theodore Them (College of Charleston, former PhD student from our lab group), João Trabucho-Alexandre (Utrecht University). Back Row left to right: Me, Martyn Golding (Geological Survey of Canada), Andrew Caruthers (Western Michigan University), Yorick Veenma (Utrecht University), and Selva Marroquín (Virginia Tech, PhD candidate in our research group).

It is also important to point out that much of the work I do involves collaborating with colleagues with a variety of specialties: paleontologists, sedimentologists and mineralogists to name a few. Combining all these different types of data allows us to make more integrated and robust scientific interpretations.

Drilling core from Chattanooga Shale in Tennessee for a study on the Late Devonian mass extinctions. In the foreground is Matt Leroy, PhD candidate in our research group. We were collecting these rocks as part of one of a of his research projects.

How does your research contribute to the understanding of climate change?

 

Studying past events informs us about how our planet responds to past changes in the climate and environment. In other words, understanding these past events helps us understand how the Earth may change in the future. Many of the events my lab group studies involve times of rapid or serve climatic and environmental change and mass extinction events.

What advice do you have for aspiring scientists?

Don’t be afraid to put yourself out there and be wrong. One of my mentors in graduate school says that 99 percent, if not all, of your scientific interpretations are going to be wrong. This isn’t an excuse to be ignorant, but all you can do is to come up with the best explanation with what you have.

Hiking to a field site in Alberta with graduate students from my lab group. This work was part of an NSF funded study on the changes in paleoceanography in response to climate change during the Early Jurassic. Left to right: Theodore Them, Angela Gerhardt and me.

Alex Lyles, Karst Resource Technician, US Forest Service

As an avid outdoorsman, getting my degree in geology was the best decision I have ever made. Because of this degree, I currently work as a geology field technician with the US Forest Service in Southeast Alaska. My job focuses on the conservation of karst, a landscape characterized by soluble (easily dissolved) bedrock that often contains caves, sinkholes, springs, and complex subsurface hydrologic networks. Karst ecosystems are exceptionally productive for wildlife, but also sensitive to runoff caused by logging, road building, waste management, and farming. My position in Alaska mostly focuses on potential logging units, since that is the main economic driver and logging near karst features often produces sediment runoff that can inundate karst systems and cause adverse hydrologic, biologic, and ecologic effects on the forest ecosystem.

I first came to southeast Alaska the summer after my senior year of undergrad, having been offered an exciting GeoCorps internship as a cave guide through a partnership with Geological Society of America (GSA) and the US Forest Service. This position, located on Prince of Wales Island, greatly helped me solidify and communicate my passion for geology, particularly the intricate workings of karst geology. I always highly recommend GeoCorps internships to budding geologists and environmental scientists because they expose those with little-to-no experience to potential environmental work in the public sector. It was my GeoCorps position that allowed me to meet Dr. Jim Baichtal, the Forest Geologist for the Tongass National Forest. Jim values my good attitude and enthusiasm for geology and Geographical Information Systems (GIS) mapping, and brought me back to Alaska as a field technician in the beginning of 2017 when I finished my undergraduate degree.

I have remained in this occupation since, and am gearing up to begin my third field season as a Karst Technician in Alaska. While this position is not research-based, I have had extensive opportunity to study the quaternary history of southeast Alaska, focusing on regional to local-scale glacial geomorphology to decipher ice flow patterns during the late Wisconsin Glaciation, which I presented a poster on at the annual GSA conference in 2017. I also know that my job as a tech has greatly sharpened my understanding of geomorphic processes and how they tie into the greater ecology, especially concerning karst landscapes. Much of my position also involves extensive aerial photography interpretation of vegetation and geomorphology prior to entering the area of reconnaissance to determine the “hot spots” for karst features. Aerial photo interpretation has become somewhat less necessary since the recent acquisition of half-meter resolution Light Detection and Ranging (LiDAR) imagery, considering that most caves, sinkholes, and springs are readily apparent upon inspection of the bare earth digital elevation model (DEM). The LiDAR makes my work easier and less likely for me to miss features, but hardly puts me out of a job, seeing as most of these features still need to be field verified and observed by a specialist to determine their significance and role in the landscape before the area undergoes any land management activities.

Left: An image of the bare earth DEM LiDAR hillshade showing a mountain lake draining into a sinkhole. Right: The same area, but with a sink fill function ran through ArcMap and converted to polygon contours to better show the detailed drainage pattern of the feature.

As a field tech, I use GIS every day, mostly centered on geologic and karst vulnerability mapping. We use a High-Medium-Low system to describe the vulnerability of the karst terrain; with High being the areas immediately adjacent to, in the direct watershed, or overtop karst features and cave systems, Medium being the expanse in between high vulnerability areas, or “karsty” areas with a low hydrologic head, and Low being karst areas without features directly leading to the subsurface, these are often covered by thick glacial till (sediments left behind by glaciers) or underlain by less soluble bedrock. No logging activity can occur over areas of high vulnerability karst. My field partner and I will enter units with GPS devices to determine this classification and I use our location data and DEM interpretation to update the “karst layer” that is used by land management specialists in the region. The Tongass karst program serves as a management model for many of the National Forests in the country, so playing a key role in the program has been a great honor and learning experience for me.

Alex enjoying a splendid day hiking through muskegs to get to a reconnaissance area. Photo credit: Brooke Kubby

Working in such an amazing place has definitely had an impact on me. My confidence as a geologist has grown, my navigation skills and competence in hiking rough terrain have developed, I am more comfortable handling responsibility, and my passion for geology and ecology develops every day that I spend contemplating geomorphic processes and geologic history. I believe that I have been especially fortunate to have these experiences, but I would not have gotten to where I am if I hadn’t taken initiative and fully thrown myself into the internships that were available. I now conduct the hiring and interviews for the same GeoCorps position that first brought me here. During college, I was unsure which branch of geology was right for me. It took getting out into the field and immersing myself into a unique environment before I realized exactly where my passions lie, and how I could fit them into the working world. I now plan on attending graduate school this fall for karst hydrogeology, a subject that I would not necessarily have seen myself pursuing 5 years ago. My advice to young geoscientists is to seize opportunity when it presents itself, and dig for opportunity when it doesn’t. Get out of your comfort zone and keep an open mind about how geology plays a role in the world. And finally, when you are applying to jobs or internships, make sure that you give each application your complete effort and attention, even if it might not exactly align with your interests at the time.

Caroline Ladlow, Sedimentologist

Caroline holding a field notebook with coring equipment in front of her in Iona Marsh, Hudson River NY.

What is your favorite aspect about being a scientist, and how did you become interested in science?

At the beginning of college one of my professor’s suggested that I take an introduction to geology course, and within a few weeks I was hooked! Before that, I had no idea that geology and earth science was a subject that people studied. But I was hooked on the idea that my classes were teaching me more about the world around me- and I still am! I love studying subjects that directly affect people and communities, so now I research historical hurricanes and different types of flooding.

What do you do?

An issue that comes up more often in the news is the frequency of intense hurricanes. These storms impact huge numbers of people along coastlines all over the earth; now we worry that these big storms might be happening more often or might be getting stronger. However, we do not have long historical records around the world of how often these storms used to happen. The really cool thing about geology is that we can look further back in time using things that nature leaves behind. I go to lakes and marshes near the coast to collect sediment- we take a big empty tube and stick it into the earth to learn about big floods that have happened in the past. It works kind of like sticking a straw into your drink and putting your thumb on top, except we do this with mud and sand. When we look at the layers in the mud, the deeper down we go is further in the past, like the pages in a book. Layers of sand tell us that a big storm happened there in the past, pushed into the lake by huge storm waves that bring sand in toward land from the ocean and beach. Counting how many of these sand layers there are helps us understand the frequency of storms through history. Knowing more about the past can help us understand how to help prepare for these storms, help protect coastal populations, and whether they are happening more frequently now.

How does your research contribute to the understanding of climate change?

Most of the global population lives within 60 miles of the coast, so studying storms and coastal flooding is really important. Boston, MA is one of many cities globally that is along the coast and vulnerable to coastal flooding, especially with the additional threat of sea level rise. Each year during hurricane and nor’easter seasons we are repeatedly reminded of the threat that these storms pose to the coastal populations of the eastern United States, not to mention other parts of the globe. The more we can constrain the frequency and strength of storms, the better we can serve and protect the people of Earth from these huge floods. I am motivated not only to be active in the research I do studying coastal flooding, but also to play a role in disseminating knowledge to public and policy spheres. The research I am involved in can help inform hurricane and nor’easter preparedness for populations all along the coasts, helping decide where structures will get built and how storm water management and adaptations plans are designed.

Showing and describing sediment cores and clay samples to our project stakeholders at an annual meeting (photo credit Jon Woodruff).

What are your data, and how do you obtain them?

Most of the data that I use comes directly from sediment, either at the bottom of lakes or on wetlands and marshes. As it builds up over time at the bottom of lakes, we can look down into the mud and read a history through the different grain sizes from sand to mud, the types of animals that lived there, and the types of materials that make up the sediment!

How do you engage with the science community and with the public?

I recently got to participate in the AGU Voice for Science program- an incredible opportunity to learn more about science communication and meet other scientists interested in outreach. The American Geophysical Union (AGU) is the largest society of earth and space scientists around the world, and they have some very cool opportunities for outreach and science communication training. So far, my outreach experience has mostly been in educational programs to get children interested in science. This program through AGU broadened my experience in science communication into policy, and we got to do congressional visits to talk to Senators and Representatives from various states about science funding. I think a really critical aspect of outreach is building relationships with the communities you want to impact and making yourself available for their questions and concerns. We often approach outreach with the attitude that we have expertise about a specific issue to offer people, but they may be interested in an entirely different subject. Asking a community what their interests and questions are before you go in with your own is a really valuable way to build trust and a strong working relationship for future research and outreach. I am excited to see how my outreach will change in the coming months after learning so much from this workshop!

What advice do you have for aspiring scientists?

Pursue your goals, even if they seem out of reach or even impossible. And never hesitate to ask others for help and advice!

 

Benjamin Keisling, Glaciologist and Paleoclimatologist

Benjamin examining a sediment core drilled from Antarctica during an expedition in January 2018. Photo by Bill Crawford, IODP.

What is your favorite part about being a scientist, and how did you become interested in science?

I got interested in science because I loved nature videos as a kid. I specifically remember one about the Alvin exploring the deep ocean that I would watch over and over, and I thought that being a scientist must be the coolest thing in the world. After that, I had a series of passionate and supportive teachers and mentors that nourished my interest in science and equipped me with the tools I needed to pursue a career in it.

There are a lot of things I love about being a scientist, but I think my favorite is the opportunities science has given me to meet people from different backgrounds. I have a network of peers, collaborators and mentors all around the world and I have learned so much, both as a scientist and a human being, from all of them.

What do you do as a scientist?

I study glaciers and ice sheets, the huge masses of ice that exist today in Greenland and Antarctica. I’m interested in how they responded to climate change in the past, so that we can better predict how they will respond to climate change in the future. This is particularly important today, because the ice sheets are melting at an accelerating rate and causing sea level to rise along coastlines around the world. To do this, I run computer model simulations of earth’s climate and ice sheets and compare the results with geologic data. I use these comparisons to understand what caused past changes to the ice sheets (for example, atmospheric or oceanic warming) and make predictions of how much sea level rise occurred during past warm periods.

Benjamin working on creating models while on the research vessel JOIDES Resolution. Photo by Mark Leckie.

How does your research contribute to the understanding of climate change?

My research helps us understand the stability of ice sheets as the climate warms, which is one way we can improve predictions of sea level rise in the coming decades.

What are your data, and where do they come from?

For my research, I work with a lot of continuous climate records derived from ice cores and marine cores, which has been a great way to learn about those archives and given me some amazing opportunities to get involved with fieldwork. If you want to read more about that, you can find information on my blog

Another part of my work that I am passionate about is making science more equitable. In many ways throughout history, scientific discourse has been dominated by some voices at the expense of others. In the U.S. today this is exemplified by the over-representation of white men as professors, in leadership positions, and as award recipients. This hinders scientific progress and is harmful to our community. Science advances by testing new ideas and hypotheses, which is inefficient when not everyone is invited to the table to share their ideas. Unfortunately stereotypes, discrimination, and harmful working conditions (among other factors) have kept many brilliant people from pursuing scientific careers, and especially academic ones.

At UMass, I have been working with a group of graduate students to address this through BRIDGEBRIDGE is a program that encourages departments to identify and invite Scholars from underrepresented backgrounds in STEM who are early in their careers to participate in an existing departmental lecture series. We also ensure that we provide the Scholar with a platform to share their personal experiences with obstacles and opportunities in entering and remaining in academia, so that current graduate students are better equipped to navigate that process. This is a small but meaningful way to make sure that all scientists feel like they have role models who have had experiences they can relate to, and we have found that many graduate students do really benefit from it.

Three penguins watch the JOIDES Resolution drill ship from a large piece of sea ice. Benjamin sailed on this expedition to the Ross Sea in early 2018 (Credit: Gary Acton & IODP).

What advice do you have for aspiring scientists?

If you want to be a scientists then you should already start thinking of yourself as a scientist. The sooner you start experimenting with that identity and what it means to you, the better prepared you’ll be for actually doing science. I remember the first time I started meeting the “real scientists” whose papers I had obsessed over as an undergraduate. The idea of meeting these big names was overwhelming and intimidating and I doubted that I could ever occupy the same profession as them. Looking back at that almost ten years later, it’s clear to me that was a false distinction that only served to hold me back.

Being a scientist starts with being curious or interested in something and simply asking questions about it. How does it work? What happens if I do this? If you are asking those questions about anything, then you’re already thinking like a scientist, and you can do anything that a scientist can do. Some of those things that a scientist does are more exciting than others (doing experiments and taking measurements compared to writing grants, for example) but my advice would be to try all of it. Writing grants based on your own ideas is scary because there’s a potential for rejection, but it’s extremely important to try, and there’s no end to what you can learn through that process. It’s taken me a long time to understand that rejection of one of my ideas isn’t a rejection of my worth as a scientist; and conversely, when you apply for a grant or scholarship and you do get it, there’s an incredible feeling of validation and support.

So I would say get started as early as possible looking for opportunities to get rejected. Apply for everything you can. A lot of things won’t come through, and you have to learn to accept that. But other things will, and getting that recognition will not only be good for your self, it will pave the way for other opportunities and lead you to new research questions. And if you’re ever intimidated by an application, don’t be afraid to reach out to people who have been there before – more often than not we are willing to support you through the process.

Chris Lowery, Research Associate & Paleoceanographer

Chris by a multicorer (a machine that sits on the seafloor and collects several short sediment cores) on the R/V Thomas Thompson during a cruise in the California Borderlands. Photo by Robyn Von Swank.

I am a paleoceanographer. Basically, I study how the ocean changed in the past, in order to understand how it might change in the future. To do this, I primarily use foraminifera, which are sand-sized plankton that have a hard shell that is easily preserved in ancient sediments. In fact, in many places far from land the sea floor is entirely made of foraminifera and other microfossils (fossils so tiny, you need a microscope to see them properly or at all). To get the microfossils, I often go in the field or to sea. I do a lot of work with core samples of both ancient and modern sediments from the deep sea and on the continental shelf, and also collect samples from outcrop on land where the sea used to be.

My research touches on a number of societally relevant topics, although if I’m honest my main motivation is just to better understand how the world works. I like when my work addresses specific problems like declining oxygen in the oceans, but there is value in all kinds of science, and you never know what discoveries might lead to an important insight into processes that are significant today. That being said, much of my work focuses on how anoxia (i.e., no dissolved oxygen in the water) develops in the ocean, and how marine life responded to it in the past.

A combination of warming water due to climate change and plankton blooms due to increased nutrient runoff from agriculture on land has led to a recent decline in the amount of oxygen in the oceans. In turn, this had led to an expansion of deadzones (places in the ocean where marine life cannot live) on continental shelves and in bays and estuaries. The modern ocean is losing oxygen at a similar rate to the just before major anoxic events in the Cretaceous Period about 90 million years ago.  These past oceanic anoxic events are useful partial analogs to understand deoxygenation in our oceans and its effect on marine life (the short version is it drives a lot of extinction).

Original painting by John Maisano illustrating the recovery of life, specifically foraminifera, after the K-Pg mass extinction event. This event was described in Chris’ paper that detailed the recovery of marine life after the extinction event.

I also study how life recovers after major mass extinction events, particularly the End Cretaceous mass extinction that killed the dinosaurs and 75% of life on Earth. That mass extinction was caused by an asteroid impact in the Gulf of Mexico. The impact caused particles to fly into the atmosphere, blocking the sun. Because of this, photosynthesis crashed, and everything went extinct in just a few years. This is probably the only major event in Earth history that happened faster than modern climate change, so it’s a useful analog to understand how ecosystems rebound after a rapid extinction event. We are not (yet) experiencing a sixth mass extinction today, but rates of extinction are undeniably high because of human activity. How the biosphere (the plants, animals, and various other life forms on Earth) will recovery once human disruption finally stops is an important thing to understand. Unfortunately, results from the past suggest that life will take millions of years to bounce back.

The best part of being a scientist, in my opinion, is working to solve problems that I find interesting (this is my main advice to aspiring scientists, too, find something that you think is interesting and that will hold your attention. There are lots of important things we don’t know and you don’t have to pick the highest profile one). The other best part of being a scientist is the opportunity to work in the field and go to sea and work with friends from all over the world to solve a problem. I got into geology because I wanted a job where I could be outside at least part of the time, but the chances to travel have surpassed all of my expectations.

Chris is currently a Research Associate at the University of Texas Institute for Geophysics. He was a member of a drilling expedition that recovered a core from the Chicxulub crater, where the asteroid that killed the dinosaurs hit. Chris and his team were featured in the NOVA documentary ‘Day the Dinosaurs Died’, which is freely available online here. To learn more about Chris and his science, you can follow him on Twitter @clowery806.

Aly Baumgartner, Paleobotanist

AlyB

What is your favorite part about being a scientist, and how did you get interested in science in general? I’ve been interested in science for as long as I can remember. My dad was working on his Master’s of Science in Biology when I was a kid and I loved going to class with him to look at cells under the microscope and helping him collect insects in the field behind our house. I got into paleontology specifically when I learned how common it was to find mastodon fossils in fields near my house. I wanted to find one of those mastodons! I love that as a scientist I still get to do these things that I loved as a kid.

What do you do? In undergrad I said that I majored in hugging trees and minored in playing in the dirt. I would say that’s still true. I use the size and shape of leaves to figure out the ancient temperature and precipitation (paleoclimate). I do this by studying modern plants and applying what I learn to fossil plants. Specifically, I use the size and shape of tropical African leaves to study the paleoclimate and environment in Kenya during the evolution of our early ancestors.

How does your research contribute to the understanding of climate change and evolution? I like to say that I am the context. As a paleobotanist, I study the ancient temperature, precipitation, and environment.What was the world like when our early ancestors were evolving. Was it hot or cold? Was it wet or dry? Was the landscape open or forested? Was there water nearby? Understanding this can help us understand the context of human evolution.

leaves

What are your data and how do you obtain them? Because I study both modern and fossil plants, I get data from a couple of different places. For modern leaves, I primarily use existing collections from herbaria. A herbarium is like a library of plants. For hundreds of years people have been pressing leaves, collecting seeds, and drying fruits and I can use these collections to understand the range of size and shape of leaves from tropical Africa. In addition, I study both previously collected fossil leaves as well as fossils I collected myself. This means that I’ve been lucky enough to spend a few months studying collections in the National Museum of Kenya as well as doing my own fieldwork.

 What advice would you give to young aspiring scientists? It’s okay to ask questions. Very often other people have the same question but are too afraid to ask.

It’s okay to ask for help. Asking for help is not a sign of weakness; it’s a sign of strength. Knowing what you don’t understand or can’t do alone shows that you understand what it takes. It’s okay to reach out to scientists that you admire. Scientists tend to be very excited to talk about their research and are happy to hear that people are interested! Scientists are humans too.

Paul Giesting, Environmental Geologist

Working on clay – carbon dioxide experiments at University of Illinois
No, I really don’t have a better picture of me working on basically anything ever.
Today I’m a consultant investigating and cleaning up soil and groundwater contamination (click here for more information); I also have a podcast called That’s So Second Millennium where I talk about science, geology and physics in particular, as well as religion and philosophy.

As far as how I got into geoscience in the first place… I was always that little boy who was really interested in math, and that expanded to include chemistry and minerals in high school. Over time the elements came to have personalities for me. I love color, so minerals were natural things for me to love as well. Years later, when I taught mineralogy, I assigned lists of elements – oxidation states – colors for quizzes. Unfortunately, it seems that students never enjoy anything as much when they’re going to be tested over it as I did when I was reading it for fun.

Hopefully you’re reading this blog post for fun, though, so let’s give it another go.

Elements, color, and minerals
You may have picked up in high school or college chemistry that the periodic table has the shape that it does because of the quantum behavior of electrons. They sort themselves out into shells and subshells. The elements in each row of the periodic table have their outermost electrons (in ground state, the lowest energy configuration) in a given shell: 1 in the first row, H and He, 2 in the second row, Li to Ne, and so on. Each shell has one or more subshells–those are those s, p, d, f letters you learn about.

How does that translate to light and color? Well, light comes to us as little bits of energy called photons. The whole electron structure business is about energy, and the jumps in energy electrons need if they are going to jump from one subshell to another. Visible light is made up of photons with a particular range of energies. Those energies happen to be about the right size to coax electrons to jump around inside the d subshells of atoms big enough to HAVE d subshells, but not completely full ones. The elements that fit that description are down there in the low spot in the middle of the periodic table, the transition elements, or you might nowadays call it the “d-block.” The rare earths, or lanthanides and actinides, or “f-block” elements also work.

If you run your eyes along the top line of the d-block, you see all in a row chromium, manganese, iron, cobalt, nickel, and copper. All of those are important elements in geochemistry and in industry, iron of course being a major element and the most abundant. They also all happen to be “willing” to lose variable numbers of electrons, go into different oxidation states, and exhibit different colors:

As you can see with cobalt and nickel, the oxidation state is not the only thing that controls the color. The ligands – molecules or ions – bonded to the metal change the behavior of the electrons and produce a whole spectrum of colors. Thus, this table is only an attempt to note some of the most common colors. You can explore the subject in a number of different directions, for an example click here.

Meanwhile, most compounds of non-transition elements, especially the “s-block” elements to the left of the periodic table like sodium and calcium, are colorless or white. It takes more energy to jerk around s and p electrons, and those energies correspond to ultraviolet photons.

Having d or f-block elements is not the only way for a mineral to wind up colored, by any stretch, but it is very common. Here are some of my favorite colored minerals and the elements that make them so, along with mugshots from mindat.org:

Crocoite, Cr
Spessartine, Mn
Fayalite, Fe
Atacamite, Cu
Scheelite, W
Phosphuranylite (yellow), U and Metatorbernite (green), Cu is more abundant than U in this mineral

Uranium and nuclear waste
My criteria for choice of dissertation topic and therefore advisor and graduate school essentially came down to this. When I ran into Peter Burns (yes, Simpsons fans, I learned about uranium from Dr. Burns, go figure) at Notre Dame, and found out that I could work at the lunatic fringe of the periodic table, I decided to go for it. I’d recommend broadening the thought process beyond just the subject matter if you’re choosing a graduate program, but I can definitely report that uranium geochemistry is not boring.

At that time, 15 years ago, this place called Yucca Mountain in Nevada was in the news as the one place under consideration for storing the U.S. high level nuclear waste from power plants. I can’t possibly go into all the issues surrounding high level nuclear waste – weapons work generates different wastes than power plants, there’s the whole reprocessing question, the security problem so that waste doesn’t get stolen and made into dirty bombs, it goes on and on.

Let’s focus on a few key issues. Whether it was the best idea or not, nations around the world built quite a few nuclear power plants. We have dozens here in the U.S., and NONE of their high level waste has ever been permanently disposed of.

Although nuclear waste is nasty stuff to deal with, nuclear power has one big advantage today: it gives you juice without having to burn fossil fuels. Wait, let me make that two advantages: unlike renewable energy from solar and wind, nuclear power plants provide baseline power regardless of the weather. So it might not be the best solution to move completely away from nuclear power just yet.

(Really, they need to get fusion plants working so that we can stop dealing with uranium, but we’ve been waiting an awful long time for that. We may have working Star Trek transporter beams before we have fusion reactors at this rate.)

So we really, really need places to put all this high level waste safely. That means we need to understand how uranium geochemistry works well enough to put together reliable models. That means we need to know what uranium species are in solution at particular geochemical conditions.

Uranium is a weird element – I did not call it the lunatic fringe of the periodic table for nothing. Uranium(VI), the oxidation state of uranium when it’s in equilibrium with all this nasty oxygen stuff we have in Earth’s atmosphere, is nearly always in the form of a weird complex cation called the uranyl ion, UO22+. Those two oxygens stick off into space to make this sort of three-ball dumbbell.

You may be aware that there are a lot of carbonate minerals… most metal carbonates are insoluble in water. Not the uranyl ion. Uranyl carbonate is mad soluble. There are also uranyl hydroxide ions in water solution at a variety of pH conditions. All this was known reasonably well from studies dating way back, some in geology (especially related to ore deposits of uranium) and some from chemical engineering. So in the run up to deciding on whether to do the Yucca Mountain repository or not, these existing studies were used to model the geochemistry and how long it would take the uranium to escape and how far it would go. Like all engineers and bureaucrats, the people involved were pretty confident about their answers.

For a trace element, uranium forms a lot of distinct minerals. That tends to happen when your chemistry is weird and you don’t fit into the sites of other elements in ordinary minerals. There were and are many of these minerals whose structures are not yet known. At the time, my research group (not me personally) was interested in a weird pair of minerals called studtite and metastudtite. Their structures weren’t known. Their bulk chemistry seemed to indicate peroxide ions, which would be very strange; there aren’t any other peroxide minerals, because the peroxide ion is really unstable. As I recall, Peter didn’t think they were really peroxides once they were crystalline, although he might remember it differently.

In any case, as it turns out, you can use peroxide to synthesize studtite and it is, in fact, a peroxide. The peroxide must be generated by radioactivity chewing up water molecules to make peroxide in the intense environment around other uranium minerals.

But as it turns out, on the way to making studtite, the real science happened.

If you jack uranium and peroxide into solution at certain pH conditions, you get crystals of studtite. At other conditions… well, you get a solution, and if you evaporate it down, depending on the counter ion (you need some cations like sodium, lithium, etc. for charge balance) you get something delightfully frightening:

Uranium… peroxide… buckyballs.

Nobody knew these things existed. They’re actually pretty stable in solution. In a nuclear waste repository, like oh say Yucca Mountain, with MAD amounts of radiation from not just uranium but a whole bunch of hot, hot fission products, there could be oceans of peroxide and the conditions could be just right for making these things, which would traipse off into the Nevada groundwater and do things those previous geochemical models did not suspect.

Yucca Mountain died because of politics, not because of these studies. It may be just as well. Maybe we dodged a bullet there. In any case, we need to do something else with all that waste, and there may be some more craziness lurking out here on the lunatic fringe that we’d better put into our models before we pull the trigger.

Carbon sequestration
For my first postdoc, I studied the interaction between clay minerals and high-pressure carbon dioxide. This research was funded by Shell in the Netherlands and was aimed at discovering whether carbon sequestration in deep aquifers is a viable option. An aquifer is a permeable rock with water in it, and deep aquifers have caps of less permeable rock called aquitards. Clays tend to be the dominant minerals in these aquitards. Many clays have the ability to expand or contract their crystal lattice and are called swelling clays.

Carbon sequestration involves scavenging carbon dioxide from power plant emissions and compressing it into a liquid or supercritical fluid. Carbon dioxide below the critical point liquifies at around 60 atmospheres, not a very high pressure. It’s actually very easy to make supercritical carbon dioxide, as the critical point is only around 30 C.

This fluid is then injected into a deep aquifer to get it away from the atmosphere. By the time it gets into that aquifer, it will be warm enough to be supercritical even if it was not at the surface. The supercritical fluid is lighter than water, so it rises, and the caprock will have to hold it in place if the sequestration effort is to work.

The following website and figure from Shell may help make more sense of this process. Click here for information on carbon capture and storage and here for an explanatory figure.

When we started the experiments, we were concerned that the carbon dioxide would suck water right out of the clay and cause the caprock to shrink and crack. Remarkably, the opposite was what we mostly observed. If anything, carbon dioxide entered the clay and swelled it. This is mostly good news: although swelling could also destabilize the caprock, a modest amount of swelling will actually close cracks and make the caprock better at holding in the carbon dioxide.

Advice
The best advice I could give to young scientists is to ask questions. Ask all kinds of questions and just talk to people. Get specific about what you can expect from a career in academia, in environmental consulting, in mining, in geotechnical, in whatever industry. Make friends and be a friend. Tell people about the things that light you up and also the things that make you sad or afraid, and be a welcoming person when other people respond in kind. This was immensely hard for me when I was in college: I was definitely a loner and pretty depressed most of the time. I had to learn eventually that I had to talk to people whether I felt up to it or not.

At the same time, be gentle on yourself. You’ve got plenty to offer the world, whatever your problems or family issues or your relationship status.