Cam Muskelly, Citizen Scientist and Paleontology/Geology Educator

What is your favorite part about being a scientist and how did you get interested in science in general?

Collecting fossils from Lower Carboniferous (Upper Mississippian) rocks from Huntsville, Alabama

My favorite part about being a citizen scientist is that I get to talk to and meet different people of all ages who want to know what lies in the Earth’s rocks. There were many things that drew me into the fields of paleontology and geology. One of the main reasons was my exposure to a teacher’s fossil collections while I was in the 2nd grade. I knew what fossils were but I had never actually held one at the time. At this time, a 4th grade teacher invited me and a friend (who was also interested in fossils) to her classroom to look at her fossil collection.

She pulled out a drawer and inside were various kinds of fossils. She had fossil specimens such as trilobites, plants, shells, and even a dinosaur coprolite (fossilized feces). She gave me a crinoid stem that she found in the Fort Payne Formation of Tennessee and thus began my journey into paleontology and later geology.

What do you do?
I provide lectures and communicate with the public about paleontology and geology. I have given talks in museums, geological societies, schools, and other events about the various topics in geology. My main focus is in historical geology and deep time geology. I try to communicate with the public about how vast geological time is by using the telltale signatures in the fossils and rocks around you. I have keen interests in early Earth and the remnants of that time as well as Paleozoic and Mesozoic paleontology and geology. I also discuss things such as the fossils that have been found in the state I live in, Georgia.

How do your efforts contribute to the betterment of society in general?
Fossils and rocks are key to the Earth’s long history. In order to understand how we as a species will survive the next few million years on this planet we call home, we have to look into how life and the factors affecting life have evolved through time. As the great geologist Charles Lyell once said, “The present is key to the past.” I constantly have my head buried in scientific literature and read what others have built on and even how it has changed based on new data that has been collected by scientists across the world.

What methods do you use to engage your community/audiences? What have you found to be the best way to communicate science?

Fossils through geologic time table set up for Science/Technology night for Puckett’s Mill Elementary school in Dacula, Georgia

When I communicate to the the public, I always stress the understanding of deep time and the importance of that concept. The concept of deep time isn’t new. It has been known since the days of James Hutton (1726-1797). Deep time is the vast expanse of time locked inside the rock and fossil record. When we think of time we normally think in terms of minutes or seconds. Geologists talk about time in the order of thousands, millions, or even billions of years. It is hard for average person to grasp such an immense scale of time. I try to make this more understable by setting fossils in chronological order to give people a idea on how fossils and environments change through each interval of the geological time scale.

I also use the “Pen Method”. Let’s say I order a new set of ink pens from the store. I open the top of the pen and on it is a small plastic ball to protect in pen from drying out. If you take all of human existence and crunch it up, human existence would fit on the plastic ball of the tip of a new pen. That would be example on how small we are in the vast geologic history of planet Earth.

What advice would you give to young aspiring scientists?
Never ever give on up on what you are passionate about. There is more than one way to become a paleontologist. Let nothing get in your way. Find opportunities around you and take advantage of them. Communicate with scientists and ask questions. Learn how to to read the secrets that are locked in the rocks. Even the smallest secrets can tell you a huge story of a lost world.

Chris Allen, Archaeologist

In laymen’s terms, what do you do?

Chris setting up a total station, an instrument used to survey land and record sub-millimeter accuracy of spatial locations, at an archaeological site located on University of Tennessee property in Knoxville, TN (Summer 2018).
I am an archaeologist, or someone who studies the people of the past. My work focuses on prehistoric and historic populations of North America. The study of archaeology involves the scientific study of the material remains, or the physical things left behind by past human populations. Archaeologists are interested in all aspects of the people of the past from the tools they used to the houses they lived in, their diets and their beliefs, the way they treated their dead, etc. Archaeologists consider the evolution of the human lineage, the effects of the environment has on different cultures, and the influence of human ideas surrounding things like identity, power, and gender on the cultures they study. Using archaeology and the archaeological method is a great way to explore any question that pertains to the past and the people who lived in it.

Archaeology is an important scientific field because for most of the human past it is the only record of who we were, how we lived, and where we came from stored in what we call the archaeological record, or the material remains our ancestors left behind. Even for the more recent human past that has a written history, many aspects of a person’s daily life are never recorded but these can be observed through thorough scientific study.

An archaeological site in the process of archaeological excavation. This photo was taken at an archaeological site located in South Carolina (Summer 2017). The project uncovered a large area and included many more team members than pictured! Archaeology is a true collaborative scientific endeavor.
Archaeologist use a systematic methodology, called excavation, to accurately record information from places where past people performed various activities, called archaeological sites. Archaeologist tend to become specialized in various aspects of the archaeological record from the study of lithic technology (how people used stone tools) to settlement patterns (the way people move and lived on a landscape). My research is focused on two parts; first is the applications of technology in archaeology used to better recognize how information recovered from archaeological sites relates to the interpretations we archaeologists make about past human behavior. Secondly, I am additionally interested in all aspects related to foodways of past people which includes activities, rules, and meanings that surround the production and consumption of food.

Chris and Danielle (a field student) screening dirt through mesh to recover small artifacts. Artifacts will have three stages of identification attached to them. They are; the site number, the unit number, and the level of that unit. This information helps archaeologists reconstruct exactly what happened at an archaeological site when all the materials gets back to the lab.
An archaeological excavation can take on many different forms depending on the environment and questions asked by the researcher. It can be terrestrial or underwater, it can be large-scaled with multiple teams, or just one or two people, it can last years or a few days. Archaeology can and does happen practically anywhere and everywhere.

My current research is focused on pottery from a Historic Cherokee site located in Eastern Tennessee. I am using spatial technology to document how pottery from the site was distributed amongst households to understand how the community formed. Additionally, my research utilizes X-ray fluorescence (XRF) spectrometry to analyze the elemental composition of individual ceramic sherds. By studying the elemental variation of pottery, I am able to differentiate between the manufacturing processes used by various Native Peoples and make stronger conclusions about how Cherokee communities organized themselves during this time period. Archaeology is often approached as a scientific form of storytelling. By collecting data from the materials past people left behind we can perhaps tell their story and record it for future generations to learn about our shared human history and experiences.

A ceramic sherd recovered from a 2017 Summer field school in South Carolina. Small details like the pattern on the surface of the sherd help archaeologist determine the age and culture the ceramic belongs to. This ceramic was likely made by someone during the Woodland period (2,500 BCE – 1,000 CE).

What is your favorite part about being a scientist and how did you get interested in science in general?
My favorite part of being a scientist telling stories from the past! Like many people I grew interested in science at a very early age, but the number of scientific fields overwhelmed me. I was undecided about which field I wanted to pursue until I was partway through my undergraduate degree. It was then that I took a few anthropology courses and went on my first archaeological dig. I was hooked and continued taking anthropology courses, changed my major, and I am now working on obtaining a Masters degree in the field of anthropology. Being a student for so long I have discovered that life is much better when you enjoy the work you do. I decided to follow the lesson and make a career out of a scientific field I love.

What advice would you give to young aspiring scientists?
Science has the great potential to take you to new places and explore research areas not yet discovered. This is why I got started in a scientific field, but I have stayed because I found and surrounded myself with wonderful people who support my academic ideas. I would say to aspiring scientists to seek other folks who support their academic goals and interests and talk to scholars (both students and professionals) that are currently in the field! If you are interested in learning more about archaeology I would recommend finding an archaeological field school near you. Most universities with an anthropology program will have a yearly field school!

To learn more about Chris and his work check out his website by clicking here!

Gabriel-Philip Santos, Collections Manager and Outreach Coordinator

What do you do?

What do I do? That’s a fun question. Most people think of paleontologists as scientists who only study dinosaurs, but really there many different ways to be a paleontologist and not all of them have research as their main thing. At the Alf Museum, I wear many hats, so really what I do depends on the day, which is really fun honestly! My main duty is as the collections manager of the Alf Museum. I like to call myself the “Keeper of Bones” because its my job to take care of the 180,000+ fossils in our museum. Sometimes that involves organizing them, repairing broken fossils, sending fossils out to other scientists, or using fossils to create a brand new exhibit.

As the outreach coordinator, my job is to create fun and engaging programs that help our guests learn about natural history. One of my favorite ways to do this is to connect culture with science. For example, for our Making Monsters Discovery Day, I dress up as Professor Oak from the Pokemon franchise to talk about the real-life fossils that inspired fossil Pokemon! This is how Cosplay for Science got started actually! Cosplay for Science is a fun imitative I created with my friends Brittney Stoneburg, Michelle Barboza-Ramirez, and Isaac Magallanes to use cosplay to explain the science behind our favorite fandoms!

Outside of my main duties at the museum, I also like to conduct my own research. I mainly focus on the evolution of marine mammals, particularly the weird, hippo-like desmostylians (imagine something that looks like a hippo, lives on the beach, but is the size of an elephant).

What is your data and how do you obtain it?

A figure from a publication, showing the growth stages of teeth as species of Desmostylus aged.

When I conduct my own research, my data is obtained through looking at the shapes and differences in the bones of desmostylians and other marine mammals. For my first publication, my co-authors and I looked specifically at the teeth of desmostylians. We looked at how the teeth type and shape changed as the animals got older and also at how they wore their teeth through use. From this, we were able to create a way for future paleontologists to tell the general age of a desmostylian based on what teeth they have and how worn they are.

My job as a paleontologist is not much of a data gatherer. I am really more of a data preserver and presenter as a collections manager and outreach coordinator. In the collections, we preserve as much data as we can by protecting fossils from breaking down and by digitizing fossils. We don’t turn fossils into data like Tron, but what we do is we photograph specimens. We create 3D models. We save data like where a specimen was found or who found a fossil in a special computer database. As a science communicator, my job is to take other scientist’s data and make it easier for the general public to understand.

How does your research contribute to climate change, our understanding of evolution, or to the betterment of society in general?

As a collections manager, I get to be part of something bigger. While I may not contribute directly to major discoveries, my job ensures that all the fossils in our collection are preserved for future paleontologists. Within the collection that I take care of, there may be many important discoveries waiting to be described. As an educator, I also get to help inspire a new generation of scientists and help to create a future that is guided by science. We are facing a very grim future because of people out there who disregard science. If I can help to make everyone in our community see the value in science, even if they don’t want to become scientists, that, I think, can help to build a better future where critical thinking is not only valued, but the norm.

What is your favorite part about being a scientist?

So many things! My favorite part of being a scientist is that I have the opportunity to learn something new everyday and then go out and help someone else learn something new! Ever since I was kid, I have loved stories and when you’re a scientist, there a limitless stories out there to discover and retell. Its just amazing and really makes me excited to come into work everyday!

What advice would you give to young scientists?

What I like to tell young scientists or scientists new to their field is to make sure that you love what you do. I’m not saying that you have to go to work or school everyday laughing and smiling, but that overall, you enjoy your work, research, or job. If you aren’t happy with what you are doing, there is nothing wrong with changing your career path. I would also like to tell scientists to be sure to take care of yourself. You should always put yourself first in anything you do. Don’t push yourself to the brink of exhaustion because you think you need to in order to succeed in science. There’s no need for that. I guess to sum it all, you do you and be sure to treat yo’ self every now and then.

To follow Gabe check out his Twitter and Instagram. To learn more about the Raymond M. Alf Museum of Paleontology click here! To learn more about Cosplay for Science check out their website, Twitter, and Instagram!

Ruthie Halberstadt, Glaciologist

 

Ruthie doing field work in the Dry Valleys, Antarctica, helping to collect a permafrost core that records ice sheet dynamics during the mid-Miocene (a very warm time period ~14 million years ago, the last time that atmospheric CO2 levels were similar to today).

What do you do, and how does your research contribute to the understanding of climate change?

I study ice sheet dynamics in Antarctica, which means that I am interested in the processes that influence how ice mass gets moved off the continent and into the ocean, in either solid (iceberg) or liquid form. The term ‘ice-sheet dynamics’ may be confusing if you think of Antarctica as a giant frozen ice cube. Instead, think of the Antarctic ice sheet as a giant cone of sand – when you pour dry sand on the top of a sand pile with steep edges, rivulets of sand start to form. These ‘streams’ move sand from the top of the pile out to the edges. In Antarctica, the same process (gravity) creates fast-moving corridors of ice – we even call them ‘ice streams’.

OK, so what about the ‘dynamics’ part? Now imagine that your pesky little sister takes a shovel, and removes a chunk of sand at the edge of the pile. Sand will flow into the newly-created hole, right? The same thing happens when warm ocean temperatures melt ice at the edges of the Antarctic continent: ice streams speed up and move more ice off the continent and into the ocean. Warm air temperatures can also increase surface meltwater production which can drain into crevasses and promote iceberg calving, also causing ice streams to drain more ice into the ocean.

These processes add to the total volume of water in the ocean. Therefore, what happens to the Antarctic ice sheet in the future will determine the rate and amount of global sea level rise.

What are your data, and how do you obtain them?

I use computer models that simplify the interactions between ice sheet and the climate, in order to reconstruct ice-sheet dynamics. We need to be confident that these models can adequately represent past time periods, though, before we can trust the computer model predictions of future Antarctic mass loss and sea level rise. Therefore, we validate these computer models by comparing them to geologic records of ice sheet behavior. My previous research project interpreted ice sheet dynamics and retreat patterns by mapping features that fast-moving ice-streams carved into the ground throughout the last glacial cycle. This information is used to calibrate the ice sheet model, ensuring that the model is physically realistic and reconstructs the same ice sheet retreat pattern as I interpret from the geologic record.

The  animation below shows a computer model projection for future sea level rise up to the year 2500. Here, the model assumes business-as-usual carbon emissions until the year 2100 (following ‘Representative Carbon Pathway’ RCP8.5). Even though the model’s carbon emissions are held constant after the year 2100, it takes the Antarctic ice sheet decades to centuries to fully respond to the high-CO2 forcing, leading to a huge amount of sea level rise. You can see the ice sheet (blue) get thinner and retreat, exposing the land (brown) of the continent underneath. I made this animation as part of a project to predict future sea level for the city of Boston; you can learn more about this project here, and see the full video I made here.  This is an example of how ice sheet computer models are used to predict future impacts of our modern decisions about carbon emissions.

 

What is your favorite part about being a scientist?

One of my favorite parts about being a scientist is the international community. When I go to conferences, or participate in field work, I am always in the company of international colleagues who become friends. I learn so much about science, but also about culture and history I would not be exposed to otherwise. Another favorite part of being a scientist is the opportunity to travel to amazing places, like Antarctica!

What advice would you give to young aspiring scientists?

My biggest piece of advice to young scientists (and to everyone) is: ASK STUPID QUESTIONS. Yes, there is such a thing as a stupid question, but no, it doesn’t mean that you are stupid. It means that you care more about understanding a concept and broadening your mind than what the people around you think. It’s hard – I still struggle with this, especially in a public setting like a class or lecture – but it’s so important. Asking stupid questions is by far the #1 easiest way to learn anything new, and often leads to the best conversations you’ll ever have. If you have a stupid question but feel embarrassed, just remember that there is a 99% chance that someone around you is wondering the same thing but is too shy to ask.

Drew Steen, Geomicrobiologist and Ocean Scientist

What is your favorite part about being a scientist?
My job is to do interesting things. If I’m working on boring things, I’m not doing my job right! Plus, I really enjoy the teaching and mentoring ends – working with younger scientists (from middle school students up through Ph.D. students) is really a joy for me.

What do you do?
I figure out how stuff rots in the ocean. Microorganisms are naturally present everywhere on Earth, and most of them eat food and “breathe out” carbon dioxide, just like us. I try to figure out what kinds of food microorganisms in the ocean (and in lakes and streams) like to eat, and how they digest it.

How does your science contribute to the understanding of climate change or to the betterment of society in general?
Microorganisms have to “breathe in” some chemical to help them turn their food into energy. Some microorganisms breathe in oxygen like we do, while others breathe in some pretty weird chemicals like iron or even uranium. The balance of oxygen, carbon dioxide, and other chemicals on Earth’s surface has a big effect on what life on Earth is like. We’re currently worried about too much carbon dioxide in the atmosphere, for instance – but if there were zero carbon dioxide in the atmosphere, Earth’s oceans would freeze solid! Three quarters of the Earth’s surface is covered by oceans, so the activities of ocean microorganisms have a big effect on Earth’s environment as a whole.

What are your data and how do you obtain your data?
I like to combine data about the chemical composition of organic matter in the ocean (i.e., leftover phytoplankton and plant matter, aka the stuff that is rotting) with measurements of the activities of the microorganisms that cause the rotting. There have been tremendous advances in DNA sequencing technologies in the past few years, so even though my background is in chemistry I am beginning  to understand what kinds of reactions microorganisms are capable of carrying out.

What advice would you give to young aspiring scientists?
Ask questions, and then read to learn the answers! For younger scientists, there is a journal called “Frontiers for Young Minds”. Just like any other respectable journal, the articles here are written by scientists and then peer-reviewed by other scientists. For more advanced folks, there are quite a few high-quality open-access (i.e., free) journals. Good ones include PLoS One, PeerJ, the Frontiers family of journals, Science Advances, and Nature Communications. These are the real deal – scientists writing for other scientists. You can use Google Scholar to find papers. Find a subject you’re interested in, and read everything you can about it! You won’t understand everything right away, but that’s OK – I find stuff in papers that I don’t understand all the time. The only way around that is to keep reading. This is learning science the hard way, but if you can spend some time reading and thinking about other people’s papers, you’re well on your way to becoming an expert.

Follow Drew’s updates on his website and/or Twitter!

Jessica Cost, Fossil Collector and Citizen Scientist

Greetings, Time Scavengers. When I was contacted to participate in this week’s Meet the Scientist blog my immediate thought was on my lack of qualifications. I hold no PhD, no Masters, and I am not currently employed in any science field. What I do have is a lifelong appreciation for science and an obsession for collecting fossils.

A windblown selfie at one of my favorite collecting locales in the Lower Bangor Limestone.

I collect fossils mainly around northern Alabama, a region rich in Lower Carboniferous aged limestone (~350 million years ago). This started innocently enough by helping a friend gather landscaping rocks several years ago. I found a rugose horn coral that day and have never stopped looking down. I attended a paleontology group meeting out of Birmingham, Alabama for some guidance in identifying some of my early finds and through that paleontology group, I met a mentor. Studying under and hunting with that mentor is where I discovered a love for fossil echinoderms.

Echinoderms are fascinating. One of the longest-lived group of invertebrates on this planet and they are still around. That sand dollar you find on the beach or that starfish you spy in a tidal pool has a looong history! And there is still so much research to be done. Debate lingers on the exact origins of the crinoid (my personal echinoderm favorite.) Research on starfish and brittle stars is underrepresented and there are so many undescribed species.

Amateurs like me depend on that research, in the form of scholarly articles to help us identify our fossils as much as the paleontologists depend on us amateurs to provide them with viable specimens to study. I have donated to the Alabama Museum of Natural History in the past and one day will donate my whole collection at large. I just haven’t finished the collection yet. Fossil collecting is like playing Pokemon, but with genera of crinoids.

I suppose the main point of my ramblings thus far is to challenge you guys to find your passion, find a mentor along the way to teach you, and take that passion even further than I have. I look forward to reading your future articles!

To follow Jess Cost’s collecting adventures on her Instagram account, click here!

Brad Deline, Paleontologist

How did you get interested in science in general?

I am one of the rare people (not so rare in paleontology) that has always known what I wanted to do in life. When I was a kid, I was obsessed with dinosaurs. When I got a bit older this expanded to paleontology in general as I was spending my summers in Northern Michigan collecting fossil corals (Petoskey Stones) along the shore of Lake Michigan and reading every book I could about fossils.

When I got to high school, I started to think about paleontology as a career and called the nearest Natural History Museum (University of Michigan) asking to talk to someone. I ended up speaking with Tom Baumiller who was very generous with his time and chatted with me on the phone, invited me to the museum, and got me working as a volunteer with the museum collections. I came to the University a year later and Tom had research projects waiting. I ended up conducting research for four years at the museum working with Tom on predation in the fossil record and Dan Fisher on stable isotopes in mastodons. This provided insight into the process of science as well as strong mentorship. I spent countless hours in Tom’s lab along with his graduate students (Forest Gahn, Asa Kaplan, and Mark Nabong), which helped to formulate my own interests and provided casual advice regarding graduate school and academia.

What, exactly, do you do?

The aspect of paleontology that really piques my interest is thinking about the weirdness of fossil organisms. Seeing the remains of animals in the past that look nothing like animals today, inspires wonder of these ancient environments and also provides a clear mystery to be solved. This is what originally interested me in dinosaurs, but as I delved deeper into paleontology it was clear that things got stranger when I looked further into the past.

Visualization of the distribution of echinoderm body forms based on their characteristics. Modified from Deline 2015 with images from Sumrall and Deline 2009 and Sumrall et al. 1997.

As far as weird goes, nothing beats echinoderms (relatives of sea urchins and sea stars). As you may know from previous Time Scavenger posts by the stellar young scientists that contribute to this blog (Maggie, Jen, and Sarah), early echinoderms are extraordinarily diverse and have many perplexing features. To explore this, I examine the diversity of features and forms (disparity). This method allows the visualization of evolutionary dynamics from the perspective of how different rather than how many. For my dissertation, I examined crinoid disparity during the Early Paleozoic focusing on a few key questions. What controls the diversity of features in a community of animals? What is the role of weird things in disparity patterns through time? And, are rare animals objectively weird? I compiled a large database of crinoid characteristics largely by studying museum collections and was able to address these questions. It turned out that rare animals weren’t all that objectively weird compared to common things. However, weird animals (outliers based on their characteristics) played a large role in understanding the evolution in form through time, especially during shifts in environmental conditions.

I have since expanded my research to examine trends in disparity in all echinoderms. This is a gargantuan project in that it requires some working knowledge of the many different groups of echinoderms. It has been one of the most rewarding tasks scientifically as it has given me the chance to sit down with many different echinodermologists and discuss the group they know best. From these discussions, I have compiled a huge character list that I along with my research students have used to examine trends in body plan evolution within echinoderms. This is still ongoing research, but I can start asking questions regarding the nature of the Cambrian Explosion and the Great Ordovician Biodiversification Event. We can explore patterns of disparity at the level of a phylum and how that parses out to the different groups within it. And, we can start to examine how different forms evolved and what limits the range of feature seen in echinoderms.

How does your job contribute to the understanding of evolution or climate change?

I work at the University of West Georgia, which is a regional comprehensive University. This means that a large portion of my time is devoted toward teaching our diverse student body. I teach a steady mix upper level geology courses and non-major introductory classes. I spend significant amounts of time in my upper level courses discussing evolutionary processes and the nature of science. I feel paleontology is a perfect place to discuss biases, uncertainty, and how scientists actually try to understand the world around them.

This is even more important in my introductory classes. I have a very casual lecture style that fosters student confidence to ask questions. I focus on discussing geologic time, evolution, and climate change. In addition, we talk about why these issues are important and explore the political implications. Politics are a tricky area in the current climate, but if I can get students to include a candidate’s scientific literacy into their decision making process when they are voting, I have done my job.

What methods do you use to engage your students?

Discussing the Mississippian rocks surrounding Lake Cumberland, Kentucky.

I find in my classes getting students out of the classroom and into the field is the most effective way to communicate. Students can make direct observations and see that the real world is much more complicated than what they see in the classroom. Field experiences foster bonds between the student and instructors that makes students more comfortable asking questions. In addition, field work creates more cohesive student groups that then are more likely to work together and elevate the entire class while they are back on campus.

What advice would you give to young aspiring scientists?

I think my advice varies depending on who I am addressing so I will list a few things:

Amateur Paleontologists

Take advantage of local fossil groups, they are a wealth of knowledge and experience! If you discover something that you don’t recognize when you are collecting fossil, they can help. Also, feel free to contact professional paleontologists regarding your questions. I have research projects collaborating with or using specimens collected by avocational paleontologists. Also, remember that professional paleontologists have tons of responsibilities such that it may take a while to reply, we can’t go out into the field as often as we would like, and publications based on your material may take a fair amount of time.

Aspiring Paleontologists

Learn as much as possible: read books and articles, go to meetings of local fossil groups (if there are any nearby), and visit museums. Contact professionals with your questions, but be respectful of their time (if you email during exam week that email might get lost!). Most paleontologists would be thrilled to meet an enthusiastic aspiring paleontologist, especially because we were also in that position.

Graduate Students

Publish your work, publish side projects, establish collaborations and publish them. Obviously, make sure the publications are high-quality science, but put yourself in the best position possible. Also, try to squash down the feelings of competition. I know students are all competing for the same grants and ultimately the same jobs. However, if you collaborate or help other students in your department or subfield, that elevates everyone. If one of your friends gets a grant, awesome. They will do more research and make your department/subfield look better. If they get a job that means you will have someone to collaborate with when you get a job! Being supportive and collaborative will make graduate school better. These friendships can also lead to exciting opportunities for you in the future. For instance, I am currently planning a joint trip with one of my graduate school buddies (Kate Bulinski) and recently received a box of Cambrian echinoderm plates form another (Jay Zambito).

Students on the Job Market

Apply to everything. I was aiming for a research position, but ended up at a teaching-focused school. I didn’t think it would make me happy, but I love it here. Don’t limit your options when you may not know what you really want. Also, take time to do the things that clear your head- meditate, jog, hike, etc. Make sure your application is the best possible and then the rest is out of your hands. Likely some of the things that a search committee is looking for are outside of your control so you might as well go for a walk with your dog.

Young Professionals

The first few years on the job are really exhausting, but a few things will make it easier. Maintain your contacts and collaborations. Pick projects that won’t be quite as time intensive. Establish mentors in your department and in your field that can give advice when you need it (thanks Bill Ausich and Tim Chowns). Avoid getting bogged down in things that are not considered in your job performance (mentors will help here). Finally, keep doing the things that clear your head. If you are busy these are often the first things that get left behind, but they are important so keep doing them.

References:
Deline, B. 2015. Quantifying morphological diversity in early Paleozoic echinoderms. In Zamora, S. and Rábano, I. (eds.), Progress in Echinoderm Palaeobiology, Cuademos del Museo Geominero, 19. Instituto Geológico y Minero de España, Madrid, p. 45-48.

Sumrall, C.D. and Deline, B. 2009. A new species of the dual-mouthed paracrinoid Bistomiacystis and a redescription of the edrioasteroid Edrioaster priscus from the Upper Ordovician Curdsville Member of the Lexington Limestone. Journal of Paleontology, v. 83, no. 1, p. 135-139, doi: 10.1666/08-075R.1

Sumrall, C.D., Sprinkle, J. and Guensburg, T.E. 1997. Systematics and paleoecology of late Cambrian echinoderms from the western United States. v. 71, no. 6, p. 1091-1109.

Marsha Allen, Cosmochemist and Hydrogeologist

What is your favorite part about being a scientist, and how did you become interested in science?

I never thought I could or would be a scientist, because I never knew that it was actually an option for me. I knew I wanted to be educated and it was along that journey I fell in love with geology at Mount Holyoke College. Under the mentorship of Dr. Harold Connolly at the American Museum of Natural History in 2009 and Dr. Steve Dunn at Mt Holyoke College, I started my first research projected analyzing a Calcium Aluminum Inclusion found within the Allende meteorite. CAI’s inclusions are the oldest rocks to form in our solar system approximately 4.5 billion years ago.

Having something that old in my hands caused so many emotions, and I wanted to understand all of the processes that formed the minerals to the creation of the rock as it moved away from the sun.

I also completed my masters’ thesis on analyzing three samples of the Chelyabinsk meteorite that impacted Russia in 2013 at Brooklyn College under the mentorship of Dr. John Chamberlain. For that project, I used the mineralogy and petrographic features to quantify the amount of impact events and mineral evolution the meteorite experienced after breaking away from its parent asteroid.

I recently started my PhD at the University of Massachusetts Amherst specializing in my other passion hydrogeology with Dr. David

An image from Marsha’s research on the Chelyabinsk meteorite. The image on the left is a thin slice of the meteorite, with chondrules (black spheres which are mineral grains that grow in meteorites), and fractures (black lines) caused by the meteorite impact. The images on the right are the same thin section under the microscope in XPL (cross-polarized light, which is used to enhance minerals under the microscope; the different colors are different minerals).

Boutt’s research group. My dissertation project aims to quantify and understand the seasonal trends of recharge to the water storage on the island of Tobago, by creating an annual water budget. It will be based on the islands annual precipitation, runoff, evapotranspiration, stream and river discharge, and infiltration into the subsurface using a transient flow groundwater modeling and geochemical analysis.

X-ray map showing different minerals within a thin section (very thin slice of rock) taken from the Chelyabinsk meteorite. The different colors represent different minerals: red is silica; green is calcium; and blue is aluminum.

What do you do?

In a nutshell, I am trying to quantify the amount of water stored in the subsurface of the island as time passes. This means that the hydrologic water budget depends on the changes of variables such as precipitation, evapotranspiration, and runoff.

I am also learning how to use isotopic ratio of hydrogen (tritium) to determine the age of water. This is important since you have an understanding of whether the water from a well is recharged by rainfall or by a deep (i.e. old) underground source.

How does your research contribute to the betterment of society?

Today, it is becoming more imperative to understand and use potable water sustainably. We see many countries or regions of the world experiencing drastic shifts in climate leading to severe droughts or massive flooding related issues. My research is directly related to climate change, since its behavior completely shifts the amount of groundwater stored in the subsurface. Thus, quantifying the amount of water stored in the subsurface at any period in time is important to sustainable water management for all countries.

Marsha doing field work in Death Valley, California, as part of her PhD research.

What are your data, and how do you obtain it?

In hydrogeology, we use a combination of data types and sources to complete an analysis. Some of these are: geological maps, well information (i.e. hydraulic conductivity and depth to water table) precipitation samples and amounts, surface water samples, and remote sensing just to name a few. All of these types of data and samples are then analyzed through various processes to produce the final result.

What advice would you give to young aspiring scientists?

I would tell any budding scientist to make sure to study a topic they are passionate about, because it actually makes the entire process enjoyable. I think it is also important to be well rounded and have a strong foundation in all science topics.

Bradley Marciniec, Interpretive Park Ranger

Brad taking a selfie on Stout Grove Trail!

I do not have any educational background in a science. Instead, I have a background in video editing. Working in that field taught me how to piece together a story. I use that skill as an interpretive ranger with the National Park Service. My job is to take the research that scientists have gathered and explain it to visitors in a way that is easier to understand. I do this by giving guided tours and presentations. I also pass along this information through informal interactions with the public while staffing a visitor center desk or walking along a trail. I try to find a way to connect visitors to the natural, historic, and cultural resources of a park. When a visitor can relate to a resource, they are far more likely to understand the facts we present to them, and in turn care about the resource. Rangers help make these connections with the use of story-telling, analogies, and metaphors. Through informal interactions with the public, we can learn more about what a visitor might value. This helps us choose the facts and ideas to present to the visitor to help them better connect with the resource.

Being an interpretive ranger gives me the opportunity to meet and educate people from around the world.

Explaining climate change and evolution to visitors is part of the job as well. Using interpretive techniques, we are given the opportunity to spark the interest of someone who may deny or simply not understand these concepts. That spark will hopefully lead visitors to research these topics themselves after their visit.

In my experience so far, I have worked at Redwood National and State parks, which contains some of the last 5 percent of old growth coast redwood trees in existence. These are the tallest trees in the world! Most visitors are surprised to hear that the park also contains 40 miles worth of coastline as well. We are lucky to have a fantastic team of scientists with various backgrounds working for the park. Whether it is a question about the redwood canopy, the coastline, or any other ecosystem in the park, interpretive rangers are always reaching out to these scientists as a resource.

My favorite thing about being an interpretive ranger is knowing there is always something new to learn about the park I am representing. I am always excited to develop a new educational program to present, or sneak in an extra fact into a conversation with a visitor. Seeing a visitor’s awestruck reaction lets me know I have done my job correctly and keeps me passionate about my work.

For people interested in a position as an interpretive ranger, I would recommend you start volunteering with your local forest preserves or museums. You can also find work through volunteer.gov. Interpretive certifications can be earned through the National Association for Interpretation and the ProValens Learning program. Never be afraid to ask questions! Rangers want to talk to you and would love to give you advice.

Rose Borden, Structural and Planetary Geologist

At Dry Falls, Washington, U.S.A.
My favorite part of being a scientist is discovering new things. I get to see things that no one has seen before and try to figure out how different pieces of evidence and types of information fit together to solve puzzles about how the universe works. My interest in science started when I was very young. I loved going on walks in my neighborhood and finding cool leaves and rocks and bugs. It’s super cool that now I get to study them as my job!

One of the wrinkle ridges I have mapped, with black arrows showing the location of the ridge. The colors are different elevations, with warm colors (orange and yellow) being higher and cool colors (green) being lower.
I am a structural geologist. This means I study how rocks move against each other, on the Earth and other planets. My current research project involves studying some features on Mars that were made by what is called compressive stress (rocks being pulled toward each other and pushed up to form a ridge shape). For this project I am looking at images sent back to Earth from spacecraft that orbit Mars. The data I use for my research are from cameras and other scientific instruments on spacecraft that orbit Mars. I have visual images (photographs) and topographic data (elevations of different features). I am trying to find all the ridges formed by compressive stress in a certain region near the equator of Mars called Aeolis Dorsa. When I find the features I am looking for, I measure how tall and long and wide they are to calculate how much the rocks have moved and in what direction.

My research helps us understand the different types of geologic processes that have happened on Mars in the past. Based on the many studies people have already done on Mars, we know that some of the process occurring on Mars include lots of rain causing rivers and lakes, giant volcanoes creating large lava plains, and wind storms depositing sand dunes and eroding rocks away to form ridges called yardangs. My research contributes to our knowledge of the tectonic processes that have occurred. This can help scientists decide what areas on Mars would be the best landing places for future rovers and manned missions and what kinds of scientific instruments or other equipment would be useful there.