The Bay of Fundy, Part 2

High tide at the Sea Caves in St. Martin, New Brunswick. Far out in the distance are quite large caves, but you can’t see them due to the high tide!

This is the final post in the series of the geology of Maine and the Bay of Fundy. To recap for those of you who might not have read my first post, I documented all the geology I saw recently on a vacation my husband and I took to Maine and New Brunswick, Canada. This is the second post all about the geology of the Bay of Fundy! This one, though, will talk about the famous rocks of the bay and how they got the unusual shapes that made them famous. Remember, the Bay of Fundy is famous because it has the highest tides on Earth.

Scenic photo of an overlook at the Fundy National Parkway

So what do these tides do to the rocks? To answer this, let’s first go to St. Martin, to the famous Sea Caves. You might be looking at this first image and think “what caves!”? Well, this first image is taken at high tide, so the caves are almost entirely underwater. High and low tide were separated by about six hours, so we saw high tide, admired the lovely scenery, and drove to see the Fundy Trail Parkway, a park that you can drive or hike the entire way through for some GORGEOUS scenery. There are spots to pull over and get out, hike short distances, or just look out from a cliff to see some beautiful sites. Here’s a picture overlooking the Bay of Fundy – remember, these lovely coastlines were largely created by the formation, movement, and melting of glaciers.

Low tide at the Sea Caves in St. Martin. This is taken at the same distance from the caves as the image from high tide.

We returned to the Sea Caves to see it at low tide-take a look! This picture is from the SAME spot, give or take a few feet. This photo should show you the height and amount of water moved by tides every day in the Bay of Fundy. The presence of these caves is due to mechanical weathering-literally, the waves associated with the tides coming in and out are quite strong and they break down the rocks. Thousands of years of these waves have created immense caves and crevasses. Once you are able to walk across the seafloor at low tide, you can truly appreciate just how incredibly large these caves are and just how strong the tides are! Here’s an image of me inside one of the caves!

I’m standing at the very back of one of these sea caves!
As we walk across the seafloor, you can see how large these cave systems really are-they’ve been created by thousands of years of strong wave action, something we call mechanical weathering.

There’s one last thing I want to point out about these tides-the effect that they have on living creatures! Snails and barnacles live in high abundance all over the area affected by low tide and these creatures find incredible ways to survive when the low tide means that they aren’t covered by water! Snails will gather in small cracks in rocks where water will pool; barnacles will form more in shadier areas, so the rocks will remain more damp than those exposed to the sun. Sometimes, snails will hang on to a piece of algae just to survive until the water comes back! Check out this image of a snail holding on for dear life!

Snails have methods to survive low tide-this snail is clinging to a piece of algae to survive until the water comes back into the area. This picture makes me think of Jurassic Park and the famous line “Life, uh, finds a way”

Now, let’s travel north to Hopewell Park, where the most famous rocks from the Bay of Fundy are. First, let’s look at the difference between low and high tide. These images are taken just about 4 hours apart. So the rock you see here was broken off from the cliffs due to chemical weathering-water percolating through cracks and breaking them apart. But, the odd shape that you see now, where the rock is much narrower on the bottom-that’s due to mechanical weathering. Wave action over thousands of years has caused these shapes to form. These rocks CAN fall without warning (and have, even recently), so park rangers are always making sure to look for signs of instability.

Low tide at Hopewell Rocks. These rocks are HUGE!

To really experience high tide, my husband and I signed up to kayak through these rocks. To say that the waves here were strong is an understatement! The waves were cresting at just under 4ft-so imagine sitting down on the beach front-you’d be completely covered (if you were curious, kayaking in 4ft waves and high winds was a blast, but also a little terrifying!)! Here’s an up close picture of that same rock you saw in the previous two pictures, from the kayak! Now you can really see where the rock is narrowed at the base-the line between the narrow and wider part of the rock marks the highest the tides can go.

High tide at Hopewell Rocks. Park rangers have to close this off quickly when the tide starts coming back in, to prevent people from being swept in the strong waves.

I hope you’ve enjoyed this series! I think one of the most important things I can say here is that this trip made me rediscover my love of geology. Sometimes, when you work long hours every day as a geologist, it can become a little hard to remember just why you love it. If you’re feeling that way, I encourage you to get out and go explore for a little while- a few hours, or even a few months, if you can!

An image of the rocks from the kayak at high tide. Take a look at how wave action has shaped this rock, from how it narrows at the base and has a large crack in the center.

Leave a Reply

This site uses Akismet to reduce spam. Learn how your comment data is processed.