Prof. Richard Damian Nance, Structural Geologist

Type locality of the 460-440 million-year-old megacrystic Esperanza granitoids, Acatlán Complex, southern Mexico.

I am a field-based structural geologist and I have been in love with geology for as long as I can remember. If you like a good “whodunit” then geology is an endless delight. All science is about inquiry and analysis, but geology is more than this – it involves the imagination. Like a good detective novel, geology provides incomplete evidence that must be pieced together like a jigsaw puzzle with pieces missing to come up with a story or, in my case, a picture of the past.

My interests lie in plate tectonics and the supercontinent cycle, and the influence of these global processes on crustal evolution, mantle circulation, climate, sea level and the biosphere. To tackle such a wide field requires a broad geological background. I am interested in any evidence in the rock record pertaining to the Earth’s changing geography with time. So I collect data on structural kinematics, magmatic environments, depositional settings and provenance, and metamorphic history. I also date rocks and analyze their chemistry and isotopic signatures. I even collect fossils! In this way I try to interpret the geologic history of broad regions so that I can reconstruct past continental configurations and thereby evaluate the causes and effects of Earth’s moving continents and the long-term geologic, climatic and biological consequences of their episodic assembly into supercontinents.

Paleogeographic map of the Rheic Ocean, which separated the southern continents (Gondwana) from the northern continents (Laurentia and Baltica) for much of the Paleozoic Era. The map attempts to reposition the continents in Early Silurian time, about 440 million years ago.

This “big picture” approach to geology suits me well because there is really no aspect of the science that doesn’t fascinate me. For me, geology has not just provided a fantastic career, it has been a lifelong passion. When I joined the Humphrey Davy grammar school in the UK at the age of 12, I came under the spell of a truly exceptional teacher by the name of Bob Quixley. Mr. Quixley taught geography, but his real delight was geology and his enthusiasm for the subject, and the blackboard artwork he crafted to convey it, were addictive. For a period of five years, he had us captivated and, in testament to his influence, no fewer than five of my classmates and I went on to university and careers in geology.

It was a decision I have never questioned. Geology embraces everything that makes a career rewarding. It is important, it matters to both science and society, it is varied and interesting, it takes place in the field and the classroom as well as the office, it pays well and, most of all, it is a lot of fun!

A dangerous game. Checking my undergraduate field mapping 35 years later on a UN-sponsored international field trip to Cornwall and the Lizard ophiolite (a piece of ocean floor linked to the Rheic Ocean) in SW England.

What, you might ask, have supercontinents to do with anything that society cares about? Well, what we don’t grow, we mine, and plate tectonics and the supercontinent cycle play a vital role in the search for mineral deposits and energy resources. They also help us understand the natural environment, the distribution of our water resources and the origin of geologic hazards. They additionally influence Earth’s climate and so help us to determine what happens when climate changes, and whether the climate change we are witnessing today is of human origin or a natural phenomena. And this just touches the surface.

So if you are studying geology or think about doing so, I strongly encourage you to continue. I have never met a geologist who didn’t love what they were doing, and to be paid to do what you love is worth a fortune!

Advertisements

Leave a Reply

This site uses Akismet to reduce spam. Learn how your comment data is processed.