Echinoderm Morphological Disparity

Echinoderm Morphological Disparity: Methods, Patterns, and Possibilities

Bradley Deline

Summarized by Whitney Lapic,  a Time Scavengers collaborator and graduate student in paleontology. Whitney studies the paleoecology of extinct echinoderms including blastozoans. Outside of research and class time, Whitney is with her cat, Quartz, and can be found tending to her numerous houseplants. 

This paper serves as a review of different approaches for and the importance of studying morphological disparity, or varying expressions of physical characteristics across a group of organisms. Since the 1960s, the importance of examining morphological disparity among organisms has become increasingly apparent. Early studies observed disparity at varying taxonomic ranks (e.g., the diversity in a phylum, like Mollusca, the group including snails and clams) while others applied numerical approaches to quantify morphological disparity. Regardless of a quantitative or a taxon–based approach, there is a need for developing some metric to quantify disparity.  

What data were used?: While this article does not collect new data, it synthesizes a collection of studies done on echinoderm disparity. Echinoderms, the group including sea stars and sea urchins, offer an opportunity as a model organism for studying morphological disparity. Echinoderms are highly skeletonized and can be abundant and well preserved in the fossil record. Additionally, they present a wide variety of morphologies and are both ecologically and taxonomically diverse. While studying disparity among echinoderm morphologies has significantly helped address some gaps in our knowledge, studying disparity still offers opportunities to explore echinoderm evolution. 

Methods: This study reports multiple methodologies and discusses them in depth with their applications, benefits, and caveats. These methodologies include morphometric approaches using landmark-based geometric morphometrics, as well as discrete character-based approaches. Landmark based morphometrics involves the identification of easily recognizable features, such as the point of contact between two plates that can be measured across individual organisms. Landmark based approaches can assist in differentiating species, studying the growth of a species throughout its ontogeny (growth and development), and can help in studying the disparity of a group through time. 

Alternatively, character-based methods are often used when fossils are too damaged to do landmark analysis. When continuous measurements of characters cannot be obtained, the expression of a character is divided into categories into which individuals may be placed. This approach presents as a coded matrix in which expressions of a morphological feature would be coded as, for example, 0, 1, 2, etc. as a means of using discrete categories. Realistically, a combination of the two are used in these types of studies. We want to utilize as many approaches as possible. When we obtain comparable results using multiple methods, this is vital in our understanding of and interpretation of potential evolutionary trends. 

The variable morphologies and the differences among them can help us explore the morphospace of echinoderms. Morphospace is a graphical representation of all forms of physical characteristics that a particular group can present with. Understanding the morphospace of taxa, and specific regions of a taxon’s morphospace can provide insight into its resiliency and susceptibility to extinction and diversification. For example, we can consider the variable morphologies of echinoderms and how very different morphologies can assist in their survival in different environments. 

A figure with a black background and white text has high resolution, black and white photos of six echinoderms labelled A through F with their respective scale bars. In the first of two rows, starting on the left: specimen A) an oblong, non-radial form of echinoderm next to a scale bar of 1mm. The outer plates of the echinoderm are large, and rectangular while the inside is comprised of smaller plates. To the right, B) a misshapen, circular edrioasteroid with apparent 2-1-2 symmetry seen in the ambulacra. Plates of many sizes can be seen around the ambulacra which form almost a star shape. The scale bar for this specimen is on the bottom left and reads 5 mm. Specimen C) shows a circular, mobile echinoid. The echinoid is crushed, but may show some short spines. Scale bar is located on the bottom left and reads 5 mm. On the second row, from left to right: D) a branching, stalked, crinoid with the calyx, or central part of the body, oriented downward. Scale bar is 5mm. E) a relatively circular diploporitan echinoderm. Five slightly curved ambulacra can be visible. Scale bar is 5 mm. On the bottom right, specimen F) a stalked eocrinoid. The stem is oriented downward with the theca, or body, showing a complex series of circular structures. From the theca, there are five arms extending from the top of the theca and outward. The scale bar is 5 mm and is at the bottom left of the image.
Figure 1: Six echinoderms from the early Paleozoic. The six specimens show a range of body plans that can be found among Cambrian and Ordovician echinoderms. Figure from Deline et al., 2020. A) Ctenocystis showing the non-radial form of a ctenocystoid. B) Edrioaster, an attached pentaradial edrioasteroid. C) The mobile echinoid, Bramidechinus. D) Anomalocrinus, a pentradial stalked crinoid. E) Gomphocystites, a pentaradial stalked diploporitan. F) Sineocrinus, a pentaradial stalked eocrinoid. Image from Deline et al. (2020).

Why is this study important?: This paper addresses the ways in which echinoderm morphologies and their disparity can be used to further investigate echinoderm evolution. There has been a rich history of utilizing disparity and morphological approaches to study echinoderm evolution, however, there are several opportunities for further study. This paper highlights the need for combining both phylogenetic study and morphologies to gain further insight into evolutionary processes, both those including, and beyond, echinoderms.

The big picture: Understanding disparity is critical to our interpretations of trends in evolution, as well as to the development of methods to test hypotheses regarding the relationship between disparity and extinction events. By quantifying variation in morphologies, we are able to both provide a metric for understanding the degree of change in morphology during the evolution of a lineage and to explore selection towards particular morphologies surrounding extinction events.

References: 

Deline, B. (2021). Echinoderm Morphological Disparity: Methods, Patterns, and Possibilities. Elements of Paleontology, Cambridge.

Deline, B., Thompson, J. R., Smith, N. S., Zamora, S., Rahman, I. A., Sheffield, S. L., Ausich, W. I., Kammer, T. W., Sumrall, C. D. (2020). Evolution and Development at the Origin of a Phylum. Current Biology, 30, 1672-1679.

Happy National Fossil Day 2021!

National Fossil Day poster for 2021 by the National Park Service.

Today is International Fossil Day! 

International Fossil Day  is an initiative by the International Paleontological Association and the National Park Service (National Fossil Day in the U.S.), the idea is to spread the interest in the life of the past and many different organisations and museums around the world host events or activities today. Of course we, the Time Scavengers team, have to participate in this, there can never be too much paleo-related fun! 

We want to celebrate IFD by showing off our team members’ favourite extinct species or individual fossils, some facts about the species or individual and why we picked them as our favourites.

Click here to visit the National Park Service website to learn more about National Fossil Day, and here to visit the International Palaeontological Association to learn more about International Fossil Day!

Linda

A fossil cave bear skeleton. Image credit: Wikipedia.

Most of my paleontology lectures during my undergrad took place in small rooms somewhere deep in the side wings of the institute building, on the edge of the paleontological collection/museum that is located within the institute. Whenever me and my friends were waiting for our professors to show up, we would stare and marvel at the exhibited specimens. I vividly remember walking into that area for the first time, it is dominated by a huge, mounted skeleton of an adult cave bear (Ursus spelaeus) and I was completely blown away by the sheer power it radiates. I didn’t care too much about the T. rex skull cast around the corner that most others found so fascinating. From that first day of paleo classes, having my own mounted cave bear skeleton has been on the top of my bucket list. U. spelaeus lived during the Pleistocene across both northern Asia and Europe and went extinct during the Last Glacial Maximum about 24,000 years ago. They are closely related to brown bears (Ursus arctos), the two species have a last common ancestor about 1.2 million years ago. Even though they were huge, powerful bears that were reaching 3.5m (11.5ft) when standing upright, with large teeth and fearsome claws, it’s currently thought that the majority of the western populations were eating an almost exclusively vegetarian diet! Recently, two very well preserved frozen cave bear carcasses have been discovered in two separate areas of thawing permafrost in Russia, an adult and a cub, both with almost all soft tissue present and intact. I’m already excited and looking forward to reading all the new research that will be done on these specimens!

Maggie 

Cast of U. anceps skull. Image credit: Wikipedia.

I worked at the Field Museum of Natural History during the summer of 2015 and that experience was what solidified my interest in paleontology. I worked with my supervisor on Eocene mammals from the western United States and had some of my first experiences doing large scientific outreach events during that summer. Because of that summer I will always have a soft spot for Uintatheres!

Uintatheres (U. anceps) lived during the Eocene in North America and were large browsers. These animals looked similar to rhinos but male U. anceps had six knob-shaped protrusions coming off of their skulls. Part of my experience working with these fossils was reorganizing the collections space that housed the skulls, they are incredibly heavy! I mentioned that U. anceps were browsers, but they also had long canine teeth that resemble the canines of saber tooth cats. These teeth may have been used as a defense mechanism but also may have played a role in how they plucked leaves from plants. While I don’t work on Eocene mammals now, Uintatheres will always be special to me for the role they played in getting me excited about paleontology and scientific outreach!

Whitney

Whitney next to Asteroceras stellare.

I cannot pick just one fossil to highlight right now, so here are two of my favorites! In 2016, I was studying in England and visited the Natural History Museum in London where I saw an incredible ammonite, Asteroceras stellare. Asteroceras was a large ammonite that lived during the Early Jurassic and whose shell reached nearly three feet in diameter. Asteroceras was a nektonic carnivore who might have fed on fish, crustaceans, and bivalves.

Whitney in front of an ichthyosaur!

My favorite vertebrate fossil is the Ichthyosaur. I loved visiting the Jurassic Coast in England and got to explore Lyme Regis, both the birthplace of Mary Anning and a town that had references to paleontology everywhere you looked. You can see ichthyosaur fossils in both the Lyme Regis Museum and the Natural History Museum in London and at the NHM, you can see some of the specimens that Mary Anning and her family had collected along the Jurassic Coast. Ichthyosaurs (Greek for “fish lizard”), are marine reptiles that lived during much of the Mesozoic and were thought to be one of the top aquatic predators of their time.

Mike

Mike in front of an American mastodon statue!

I have three favorite extinct species: the American mastodon (Mammut americanum), the dinosaur Parasaurolophus, and the chalicothere Moropus elatus. Mastodons are distant relatives of the elephants, and they seem to be overshadowed by the wooly mammoth. However, both lived in North America until the end of the Pleistocene epoch. I’ve always thought that Parasaurolophus was an elegant duck-billed dinosaur, and I’ve seen them featured in several movies in the Jurassic Park series. I think that chalicotheres are so bizarre! Distant relatives to horses, rhinos, and tapirs, imagine a big draft horse with giant claws instead of hooves! I’ve seen several skeletons of these over the years. Moropus elatus went extinct in the Miocene epoch.

Mike next to a Moropus elatus skeleton!
A statue of Parasaurolophus.

Alex

Like anyone in paleo would tell you I can’t pick one particular fossil organism as my favorite. Currently my favorite fossil organism is the “bear-dog” known as Amphicyon ingens which would have been a formidable predator during the Mid-Miocene. The cenozoic was a time for innovation in mammals and bear-dogs were the best of both worlds. All the stoic grandeur of a bear and all the cute charm of a dog, what more could you want? The picture shown was taken at the American Museum of Natural History in New York City.

Amphicyon

Jonathan Jordan (Paleo Policy Podcast)

For me, the Mesozoic reigns supreme. However, my recent trip to the La Brea Tar Pits in Los Angeles gave me a greater appreciation for the Cenozoic era and mammalian evolution in general. While it may not be my favorite fossil ever, I was captivated by Panthera atrox’s look and the idea of an American Serengeti 340,000 to 11,000 years ago. Genetic analysis suggests with high likelihood that Panthera atrox is a close relative of the Eurasian Cave Lion (Panthera spelaea). After the Bering Strait land bridge was submerged by rising sea levels, Panthera atrox was isolated from its Eurasian relatives and became a distinct species that has been found as north as Alaska and as south as Mexico. Neat! Check out an image of Panthera atrox’s skull on the Smithsonian Learning Lab site!

Kristina

I’m fortunate to have worked on many different types of animals during my career, starting with dinosaurs, then moving to Devonian brachiopods and their encrusting organisms, and now working on much younger Pleistocene-aged animals that are still alive today. I mostly study biotic interactions, such as predation, so I thought I would share my favourite trace fossil (ichnotaxon), Caedichnus! Trace fossils are different than a body fossil because they show evidence (or traces) of an organism or its behaviour. In the case of Caedichnus, this trace fossil is created by a crab trying to break into the shell of a snail by peeling away at the shell opening (aperture) until it can reach the snail’s soft body. Imagine having a crab try to peel your shell back like an orange – scary! Caedichnus traces are useful for determining how many crabs were in an area, and identifying patterns of crab predation through space and time. I’m now using them to determine the impacts of climate change and human activity on crab fisheries since pre-human times.

Adriane

Like most of my colleagues above, it is incredibly hard for me to say which fossil is my favorite! So instead, I’ll talk about my favorite fossil group, the foraminifera. Foraminifera are single-celled protists that live in the surface ocean (planktic foraminifera) or in/on ocean sediments (benthic foraminifera). Planktic foraminifera are my favorites; they evolved about 175 million years ago, and still live in the global ocean today! One of the ways which we know about past climate states how the ocean behaved to such warming and cooling events of the geologic past is through analyzing the chemistry of fossil foraminifera shells, or tests! Foraminifera are also incredibly useful in studies of evolution, as they have a robust fossil record. Learn more about Foraminifera here!

Various planktic (surface-dwelling) foraminifera (marine plankton) species. Images are 60-100x.

What’s YOUR favourite extinct species? Let us know in the comments, maybe we will feature them in a future post!

Meet the Museum: The Paleontological Research Institution and Museum of the Earth

Whitney here – 

Here I am posing with Cecil, the Coelophysis, and the Museum of the Earth’s Mascot! The silhouette of a Coelophysis can be seen in the PRI and Museum of the Earth’s logo.

During the summer of 2017, I was an intern at the Paleontological Research Institution (PRI) in Ithaca, NY. The PRI works in conjunction with the Museum of the Earth and neighboring Cayuga Nature Center. You can follow them on Facebook, Twitter, Instagram where they share updates on exhibits and virtual events like Science in the Virtual Pub. The Museum of the Earth’s social media also features takeovers from guest scientists and live updates from the prep lab. The museum is currently on a modified schedule during the Covid-19 Pandemic, but you can check their updated hours here. Additionally, the Museum of the Earth has recently started a new initiative in an effort to increase the accessibility of their museum to the community. During Pay-What-You-Wish Weekends, which take place during the first weekend of each month, guests may choose from a range for their admissions cost in place of traditional ticket costs. 

The PRI and Museum of the Earth typically host one or two Saturday day trips each summer to local outcrops where the public can participate in the fossil hunting experience.

As an intern at the PRI, my time in the museum was limited, however, I was sure to take a self guided tour through their exhibits before I was to start next door in the research labs at the PRI. Since that summer, the Museum of the Earth has expanded its collection of in person and online exhibits which you can see the availability of here. These online exhibits and videos are great educational tools while remaining remote. There are many exhibits currently on display at the Museum of the Earth, so I will do my best to highlight a few of my favorites!

During the field trips, you are almost guaranteed to see some great fossils and maybe even find a few of your own!

The museum as a whole is set up so that the guest experiences a Journey Through Time – an exhibit which comprises the majority of the museum displays. The Museum of the Earth displays fossils ranging from microfossils to the Hyde Park mastodon and those from early life on Earth to present day organisms. These exhibits include the 1.5 meter heteromorph ammonite, Diplomoceras maximum, which was discovered on Seymour Island, Antarctica, and the North Atlantic Right Whale skeleton. Upon entering the museum, guests are greeted by a 44 ft long whale skeleton suspended from the ceiling between the two floors of the museum. North Atlantic Right Whale #2030 passed away in Cape May, New Jersey in 1999 and PRI employees assisted in recovering and cleaning the skeleton, where it was added to the museum in 2002. The skeleton was so big that during construction of the museum, part of the building was left open so that the whale could be brought in via a crane. Guests wrap up their journey through time with the coral reef exhibit, where they can learn about reef ecosystems and discover the importance of the diversity of fish and invertebrates that live within them, and the glaciers exhibit, where they can explore the history of glaciers in the Finger Lakes region.

Daring to Dig: Women in American Paleontology is the most recent exhibit at the Museum of the Earth and is permanently available online!

The Museum of the Earth has a new exhibit that opened in late March – Daring to Dig: Women in American Paleontology. Not only is this an in-person exhibit on display at the museum until Fall 2021, but it has become permanently available online for those unable to visit Ithaca. This exhibit works to both highlight the achievements and discoveries made by women in paleontology as well as introduce the public to trailblazers and modern voices. This exhibit works in tandem with the recently published children’s book, Daring to Dig: Adventures of Women in American Paleontology, to demonstrate to children and students that science is for everyone. You can learn more about the Daring to Dig Project here

During non-pandemic times, the museum and PRI host the occasional field trip to local outcrops in upstate New York. As an intern at the PRI, I was able to tag along on these great opportunities. These field trips are open to the public for a fee which provides access to basic supplies that you may need while out at the site as well as the educational experience provided by local experts at the PRI. Be sure to keep an eye on their events page where you can be kept up to date on both virtual and in-person events and activities going on!

 

Field Camp: An Introduction & Personal Experiences

In geology, fieldwork includes the direct observation, description, and sampling (or additional analyses) of rock outcrops, rock exposures, other geological features, and landscapes in their natural environment. To prepare geoscientists for field work, undergraduate geoscience students are often required to take field camp. Field camp can be an important component of geological studies, offering opportunities for collecting data and fine – tuning observation and mapping skills that students may be introduced to in the lab. While some argue that field camp is a critical part of an undergraduate geology degree, field camp can be quite exclusionary and should not be a requirement for a degree. That being said, there are numerous advantages and challenges of partaking in field camp or conducting field work. Here, we share our perspectives on field camp and our experiences, as well as share some ideas about how you can win money to attend field camp. 

Basics of Attending Field Camp

Field camp provides an opportunity to get hands-on experiences in sample/specimen collection and develop mapping skills. Essentially, it is a practical application of all of the coursework you have taken as a geoscience student .

Some field programs connect with other institutional programs at a shared ‘base camp’. This promotes networking and relationships to be built outside of your field cohort. For example, Jen was based at the Yellowstone Bighorn Research Association and a field camp from Houston was also residing there during the summer. Although work was largely separate, we ate meals together and shared common facilities. Some field camp programs accept external applicants, which promotes meeting new peers and experiencing the field together.  

Field course requirements can vary greatly by program and in some cases, field courses are not a requirement of the program. Some programs require six credit hours in field work which may be held over a six week long field camp. Additionally, some field camps and courses have prerequisites, which could include more specialized courses such as sedimentology, stratigraphy, or structural geology. Another aspect to keep in mind is the cost of field camp. Some field courses are quite expensive and do not provide financial assistance. Some courses require you to get your own transportation to the base camp, which requires additional resources and logistical planning. As field courses are commonly six weeks, attendees must take off work reducing their income and available time. Other costs include any gear you must purchase to safely attend. 

In a lot of cases, universities and colleges may have some source of funding to help their students attend field camp. These funds are, in most cases, provided by alumni donations that help cover a large chunk, but not all, of the students’ field course expenses.

There are also a few scholarships and grants you can apply to to attend field camp. Here a few examples of such awards:

Personal Experiences

Whitney Lapic, attended as an undergraduate with Mount Holyoke College

Field camp was not offered at my undergraduate institution, Mount Holyoke College. My program did offer a class which was based on a trip to Death Valley that was held over spring break every other year, but this was the closest thing we had to a field course. At the time, I did not think that seeking out a field camp would be worthwhile as I was not going into a subdiscipline that was field work intensive. That being said, I still wanted to gain field experience – and I believed that the experience was a requirement for me to get into graduate school. 

My greatest concern for field work was being able to physically keep up with the group and I know that this fear, and the cost of field camp, greatly deterred me from attending. I was however, extremely lucky to have been accepted as an exchange student at the University of Kent in Canterbury, U.K. for a semester and decided to take some time to create my own miniature field excursions while abroad. After plenty of research, I organized a series of trips to the nearby Gault Clay formation in Folkestone, which was a brief and inexpensive bus trip away. Here, I was able to work at my own pace (while trying to beat the tide) and gain experience in collecting, preparing, and identifying fossil specimens from start to finish. While this was by no means a replacement for a field course, it still introduced me to new challenges and allowed me to gain experience on my own time. It certainly helped that I was in a location of my choosing, so it was of significant interest to me. 

Linda Dämmer, attended as an undergraduate with University of Bonn (Germany)

I studied Geosciences at the University of Bonn (Germany). The system there works a bit differently from many US geology programmes: Almost all courses, with just a few exceptions, had a mandatory field work component. These field trips ranged from a few hours used to visit a little stream nearby and practice different methods to estimate the amount of water flowing down the stream per hour, to traveling abroad to spend 10-14 days practising geological mapping or learning about regional geological features. I’ve probably participated in close to 20 field trips during my undergraduate studies, I visited Austria, the Netherlands, Spain and Bulgaria during these excursions as well as many sites in Germany. Except for the far away field trips (Bulgaria and Spain) where we had to pay for our flights, these were generally fairly low cost, since the university covered the majority of the expenses, most of the time the students had to pay about 50€ (approx $60) or less as a contribution. There have been people who were unable to attend the mandatory field trip components of the programme, for a variety of reasons (for example pregnancies or disabilities), and they usually were able to instead do a different activity such as written assignments instead. In addition, for many courses more than one field trip option was offered, because taking an entire class on a field trip at the same time doesn’t work well. So based on interests, schedules and financial situation, everyone could often choose between different field trips, that would all count for the same course. I have learned so much during each field trip. Seeing geological/environmental features ‘in the wild’ has helped me tremendously to deepen my understanding of the processes involved and I’m very grateful for these experiences. But they also – and maybe even more so – helped me understand my physical boundaries and how far I can push myself, they helped me improve my organisational skills and made me a better team player. I think these are probably the real advantages of doing field trips, the actual content can probably also be learned in other ways. But the vast majority of the field trips also turned out to be lots of fun, even when you’re sitting in a tiny tent with two other students while it has been raining for the past 4 days and everything you own is completely wet and muddy, when you’re hiking through the mountains and your mapping partner is about 65% sure they’ve just heard what sounded like a wild boar behind you, or when you’re sweating and getting sunburned while trying to find your way back to the campsite in the spanish desert without any landmarks, there’s always something to laugh about and other people to help you out on when you think something too hard. Like that one time I managed to lose my field notebook at an outcrop and only noticed after a 90 minute hike to the next outcrop. I was already exhausted and really wasn’t looking forward to hiking back and forth again to get my notebook, but thanks to a friend volunteering to go with me, I managed to do it (that’s the day I learned to take a picture of every page of my notebook after every outcrop AND to save the pictures online as soon as possible).

I think it’s absolutely worth it, if you’re able to join field trips, I recommend you do it. 

I’d like to briefly discuss a different aspect about this though. All of the things I said are only true if you go with the right people. While I’ve not experienced too many negative situations during field trips myself, I’m aware that some people have not had a great time during field trips. For example, because the majority of geologists on this planet still consist of cis male people, who might not understand that menstruating or having to pee in the field can be a challenge for AFAB people, it might be difficult or embarrassing having to argue in front of the entire class that someone needs a break. Sometimes you also find out the hard way that the nice professor isn’t actually as nice as you thought when you have to spend 24h per day for an entire month with them instead of just attending their lecture for 2h every Tuesday morning. 

I’m still recommending everyone to join as many field trips as possible, but if you can, make sure there’s at least one person you already know and trust among the other participants. Having friends with you will make it a much better experience, in many ways.

Jen Bauer, attended as a graduate student with Ohio University 

I have an undergraduate degree in biological sciences and an earth science minor. The minor program did have a field component but it was only a week long trip to the Ozark area. This was  a nice precursor because I understood what a much longer version would entail. I completed my field camp during my MS program at Ohio University. It was my first summer and was run through Ohio University, so I didn’t have to apply for other programs. I could simply enroll in the course. At this time the course had two parts: (1) a two-week component that was focused near Athens, Ohio and in the nearby West Virginia mountains (this was meant to help us get accustomed with techniques in the field prior to being ‘released’ into the wild; and (2) a four-week component that was largely based at Yellowstone Bighorn Research Association. I completed this field course that summer and really enjoyed the experience at large. My biggest concern was being comfortable in the field and being able to keep up with my field partners. I trained regularly for a month in advance – cardio and weight training, which was certainly a little over the top. I had no trouble keeping up. I did not have the best field clothes due to not having money to purchase anything too expensive. This did not hinder me in the slightest. Since I went as a graduate student, my experience was a little different from those that attend as undergraduate students. I went in fully expecting full nights of rest and I worked hard so that I wouldn’t have to pull all nighters. I cannot function well on lack of sleep, let alone hike and map an area if I am exhausted. I made very conscious choices to be mindful of this. I still got my maps in on time and did very well in the course. My advice for folks heading to field camp would be to be confident in your abilities and know your weaknesses – you can’t be good at everything and it’s ok to lean on your field partner. Also, don’t forget to enjoy the experience. It’s a practical application of all of your knowledge up until that point. I had a lot of fun seeing structures and trying to infer them while drawing the maps. 

Maggie Limbeck, attended as a graduate student with the University of St. Andrews

My undergraduate institution (Allegheny College) did not require field camp for graduation because we were able to incorporate a lot of field trips/field work into our classes. All of my upper level courses either had weekend field trips around the area (Western Pennsylvania, Catskill Mountains in NY, West Virginia) or had multiple lab weeks that were designed around field work. We were also required to take a seminar course that had a week-long field trip to a further destination (my year went to Sapelo Island, GA), where we could really practice our geology skills as a capstone course. 

When I got to grad school, it was considered a deficiency that I had not been to field camp and I needed to go in order to graduate with my Master’s. I ended up going to Scotland for field camp and even though it was an international field camp it was priced similarly to attending one in the United States (read a previous post on Field Camp in Scotland). Because I was going to be doing field work in a chilly, wet climate I did spend a fair amount when purchasing a raincoat, rain pants, and boots to make certain I would stay dry and warm during long days in the rain. These purchases, while expensive, did keep me happy and dry as it rained for weeks while I was there! Going as a graduate student was an interesting experience because many of the other students bonded by staying up late working on their maps and/or going out to party – I on the other hand was working to make sure I could go to bed at a decent hour and be up early enough for breakfast and to make my lunch for the next day. Having an awareness of how you work best and function best is really beneficial because you are setting yourself up to be successful (and there are probably other students wanting to keep a similar schedule as you that you can work with!), but do make sure you do take advantage of some of these later nights, they are really help bond you to the other students and will make working with different groups of people a little easier. One other piece of advice: don’t be scared to speak to the instructor if you aren’t feeling well, are hurt, or need some adjustments made. We had a specific cooking group for those with dietary restrictions or preferences and those who were not feeling well for a day were given different activities to complete. It might be little things (in our case, my group hated the mustard that was being purchased for lunches!) but it’s important to talk to your instructor so you aren’t stuck in a situation that could potentially be dangerous for you!

Sarah Sheffield, attended as an undergraduate with Bighorn Basin Paleontological Institute

I went to UNC Chapel Hill, which does require a field camp for their geosciences B.S., but did not offer one themselves. So I went to field camp at the Bighorn Basin Paleontological Institute. I had to pay for out of state tuition for two credits (it was a two week program), which was expensive, but I gained a lot from the program. I flew to Montana and met the other participants, many of whom I still talk to a decade (!!!) later.  This field camp was unusual for a geoscience degree, in that there was no mapping or structural component. However, I did learn skills such as: locating potential fossil sites; jacketing vertebrate specimens; and vertebrate fossil identification, among other things. I enjoyed my time and highly recommend it if you have the opportunity! The major downside to field camp was cost: the tuition was difficult to cover, but it wasn’t the only consideration. I did not have access to good field gear, which meant that my time in the field was not as comfortable as it could have been (e.g., my shoes were not really appropriate for strenuous field work; good boots are arguably one of the most important pieces of gear for a field scientist!). See if you can find used, quality gear on sites like eBay, Craigslist, etc.-sometimes you can find gems for really reasonable prices! 

My M.S. institution did not originally count this field camp as a field credit, due to the lack of mapping and structural geology components. However, the department chose to waive the requirement in the end in order to not have a graduate student in their undergraduate field camp. My Ph.D. institution simply required that I do field work during my Ph.D., which I did in Sardinia, Italy during my second year there. I only mention this because my field camp at BBPI may not count at other institutions as a traditional field camp credit, so you’ll want to check with your institution.  

As a paleontologist, I find that I did not need a full field camp to become a successful geologist. My research takes place in both the field and in museums, with more of an emphasis on museums. As I write this, I have been unable to do field work for a few years due to a severe ankle injury, so I am grateful that the geosciences field is becoming more broad, so that more folks who may not be able to do field work for many reasons can do so! 

Kristina Barclay attended as an undergraduate with the University of Alberta

I took my undergraduate degree in Paleontology at the University of Alberta (Edmonton, Alberta, Canada). I was required to take 3 field classes (1st and 2nd year geology, 4th year paleontology), and another one of my classes included a field trip (4th year paleobotany). I also took an invertebrate zoology class at Bodega Marine Lab (UC Davis) as a grad student, but as I was already working/living at the lab, I didn’t have to spend any extra money (other than tuition), but other students had to pay for lodging/meals. The 1st and 2nd year geology field camps I took at the U of A were 2 – 3 weeks tours across Alberta and B.C., mostly consisting of mapping exercises in the Rocky Mountains. Our paleo field schools were within the city, so we could go home every day, which was nice after a day of digging in the snow/mud in April! For the 1st and 2nd year field schools, we stayed in hotels or cabins. At the time, a lot of the costs were funded by oil and gas companies, so there weren’t too many extra expenses incurred by the students (other than tuition). That said, field gear is expensive, and as a 1st year, buying expensive waterproof notebooks, rock hammers, hand lenses, sturdy hiking boots, and field clothes was a little hard on the budget! Although, many years later, I still own and use a lot of those things, so some were very useful investments if you’re going to continue to do field work.

One thing I’d say is that it’s not worth buying the really expensive field clothes or rain gear because one tumble on rocks or rogue branch, and they get shredded. Field gear doesn’t need to be pretty or brand-named – I buy $10 rain pants because I know I’ll destroy them anyway (and I’ve had one of those pairs last me 10 years). The other challenge was that I paired with two men for the trip (we were marked as groups and stayed in the same cabins). They were good friends of mine and I was fortunate enough to trust them, but as a smaller woman, keeping up with them and finding a private spot to “go” outside was a little bit of a challenge! Thankfully, there were usually spots with trees, but I’ve done a lot of fieldwork with men where there was no cover, so trust is key. I tend not to drink coffee when I’m in the field and just stick to water to minimize unnecessary trips to the bathroom. You don’t want to short-change yourself on water in the field, though, so just make sure you are open and honest with your group about your bathroom needs (menstruating folx, especially). Field camps can be tiring, cold, and a pile of work, but they are absolutely awesome experiences and a chance to visit some amazing, remote places. They also gave me the confidence and experience to be able to conduct and lead independent field work in grad school, which might not be necessary for everyone, but is an important part of my research. Make sure to take lots of pictures and notes (good note taking is so important) and enjoy the experience!