Homeschooling and Science

Rose here-

I am a geologist and data engineer, and I was homeschooled. When I was growing up, homeschooling was not very common and most of the few resources available were focused on conservative/religious families. We had a handful of other homeschool friends over the years but most went to public school. While homeschooling may not be for everyone, it is great to see that it is so much more accepted now. Recent statistics show that 3-4% of K-12 students in the US are homeschooled, although that number may be higher at the moment due to the Covid pandemic.

When I first started taking science classes in college, I was a bit nervous because I had had no formal science and especially lab classes while being homeschooled. However, I feel that homeschooling did prepare me for college by requiring me to be self-motivated and good at finding information on my own. Another advantage of homeschooling is flexibility. For example, if an activity or lesson doesn’t take very long, you don’t have to wait for the class to be finished while twiddling your thumbs, you can move on to the next thing and finish everything more efficiently. On the other hand, if a concept is taking longer to learn, you can take all the time needed until you get it down. This taught me time management and persistence.

Another cool thing about homeschooling is the flexibility to develop your own curriculum. Some students work best from textbooks and with lots of structure, others do best with non-structured activities or schedules that change often. The advantage here is it’s all up to you so you can experiment until you find what works best for you.

Since a lot more of you are homeschooling right now, either long-term or just short-term during the pandemic, I’ve put together some ideas for teaching/learning science at home.

  • Your local public library is a treasure trove of resources for whatever you need. Any subject you want, you can find books or videos to check out. If you need help, the librarians always love to help you find the perfect resource to fit your needs. One common way my family approached science at home was to pick a subject and find a good book or video series to take us through it (chemistry, biology, astronomy). We’d watch or read and then discuss together.
  • Another favorite activity was using nature field guides to ID things we saw outside. We had a collection of field guides for things like birds, mushrooms, and native plants and loved looking up a bird we saw at the feeder or a leave we found on a walk. Whether on walks in the neighborhood or park or just in the backyard, take pictures or sketches of cool leaves, birds, critters, etc and then look them up when you get home. The guide will have basic info but once you figure out what you saw you can dig deeper online or in an encyclopedia to learn more if you’re interested. [Editor’s note: Look into apps like iNaturalist, Seek, and eBird for on the go identifications and to contribute to community science efforts!]
  • While not too many are open yet, museums and public gardens are great places to explore and spend some time learning while having fun. Often public libraries will have discount or free passes available for local places like these, so look into those (many may not be available during pandemic restrictions though). Even if they’re not open, many museums are posting activities for families to do at home right now, so check out some websites and see what you can find.

There are also lots of good science-based shows that you can find streaming online. Some favorites for younger kids are Emily’s Wonder Lab and Octonauts.

The Benefits of Community College: Personal Stories and Examples

Adriane, Rose, Shaina, and Jen here-

Here in the United States, community colleges are two-year institutions that cater to students in or just out of high school and people who are returning to college for a degree. In some areas, local high schools partner with community colleges for students to participate in special technical classes to expand their skill sets. This can include mechanical courses, film and editing, and much more. In short, community colleges are higher-education institutions that can provide workforce training and which offer several classes that are considered ‘core courses’ at four-year institutes and universities. Core classes include such topics as history, math, art, and science, with electives and options within each of these topics. Students who attend community colleges often transfer to a four-year university to complete their undergraduate degree, which takes another 2+ years depending on their degree. In some states, community colleges have agreements with universities that allow students a guaranteed transfer if the student meets certain requirements. 

Community college provides a fantastic option for students who finish high school and don’t quite know what their career path will be, for working folks who need flexibility in choosing courses and schedules, and for others in the community who might just want to take a course or two on something they are interested or passionate about. The very attractive aspect of community college is that class sizes are often smaller, the professors and teachers have more time to dedicate to students, several classes are available as online courses, and the on-campus classes may have several different times to fit the schedules of working students and adults. And bonus, similar to large four-year universities, many community colleges offer athletic and recreational teams for you to join! 

Regardless of all the pros to community colleges, there is still a perceived stigma surrounding them. 

The purpose of this post is to share some of our experiences with community college to break down the stigmas and negative perceptions surrounding community colleges by highlighting our own experiences in community college. We argue that we wouldn’t be where we are today without the structured training, guidance, and mentorship we received at our respective community colleges. 

TL;DR: Benefits of Attending a Community College

  • Attain a higher GPA after high school
  • Increase knowledge in certain subjects that were not taught sufficiently by a high school
  • Increase self-esteem in an academic setting
  • Build a support network of professors, teachers, and other students
  • Flexible schedule
  • Ability to take as few or as many (with limits) courses as you feel necessary
  • Opportunity to explore different career paths and options through diverse course offerings
  • Determine if a career is right for you
  • Affordable compared to a 4-year institution
  • Local students can live at home and save money on living expenses that would be incurred at a 4-year university
  • Take courses while simultaneously attending a 4-year university and have those credits transfer
  • Federal and state grants often cover the full cost of tuition (in and out of state)
  • Most professors also teach at a 4-year university or have in the past, and can offer advice to students pursuing a BS/BA degree and higher
  • Some professors may have worked in industry or in a non-academic position, and can offer advice to students pursuing these career paths
  • Some states offer a guaranteed admission program from community college to 4-year universities 
  • Some community colleges have exchange programs, offering students international experiences 
  • Because so many adults go back to school, the range of ages and life experiences in a classroom is very enriching and diverse

Adriane 

I started in community college the fall after I graduated from high school. I knew after graduating that my grades were not competitive enough for a 4-year college, and that I would likely do terrible on the GRE exams. My high school education was also not the best. I didn’t learn algebra as well I should have, and I was often bullied and had low self-esteem, which fed into doing poorly in my high school classes. I would often skip high school to go to the movies with my friend, or went riding my horse by myself (both were likely bad ideas). So attending my local community college was the best option for me. In addition, I also did not know what I wanted to do for a career. I thought that perhaps I wanted to be an artist (graphic art and design), or go into the medical field (even though medical stuff grosses me out), or even be a machinist like my dad (which would have been a really fun career, to be honest). 

Around the time I graduated high school, my mom was going through a divorce and was raising my little sister. I got a job in a retail store, and helped my mom with my sister, getting her on and off the bus everyday, and I was also able to help pay bills and help with groceries. Attending community college was great because I was able to work, help out around my home, and still take courses. My local community college, called J Sargeant Reynolds in Richmond, Virginia, had very flexible class schedules which worked great with my work and home schedule.

It was also at J Sarge that I found the career that I am currently in. I had to take science electives, so I took Geology. I figured I always loved rocks and fossils, so why not? During the first semester, our instructor took us to a local creek, where we collected fossils from ~15 million years ago! I was totally hooked. So I took another geology course, and it was during this course that I knew I wanted to become a geologist. Community colleges in Virginia have a guaranteed acceptance program with several state 4-year universities: if your GPA is high enough after graduating with an associate’s degree from a community college, you are guaranteed admission into a 4-year university. My grades were above a 3.5 at the time I graduated, so I was automatically accepted into James Madison University. Most of my credits transferred, so I was able to finish my geology bachelor’s degree in 3 years. 

Rose

I started at Green River Community College after graduating high school. I was primarily homeschooled through high school, but took a few electives at my local public high school (choir, Shakespeare, a cooking class). One of these classes was an education class. I loved kids but wasn’t sure if I wanted to be a classroom teacher, so my teacher at the high school suggested I start at the community college first. Our local CC has a well-respected education program, so if I did decide to go on to get a teaching degree I shouldn’t have any problems transferring and would be well-prepared. If I decided I didn’t want to pursue a teaching degree, I would have an associate’s degree in education, which would allow me to work as a paraeducator. Other advantages of this option were that I could live at home and save money. Because tuition was lower here than other colleges, I was also able to get Pell grants and state need grants that covered my full tuition.

I loved my classes because there were always a variety of people in them. There were students like me straight out of high school, high schoolers in the Running Start program, people coming back to school after many years to finish college or find a new career, and folks from the community who were just interested and taking the class for fun. My CC also had a large and well-known international exchange program. Students from many East Asian and European countries came for a year to study abroad in the US. For example, my chemistry lab partner one quarter was from China and my class partner was from Belgium! My lab partner in geology was Dutch, and while he didn’t go on to get a degree in geology we both decided it was our favorite class ever and still keep in touch via social media today.

Shaina

I started attending Manchester Community College the fall after graduating from high school. Growing up I knew I wanted to be an astronomer, but unfortunately my high school had very few options for math and science courses and most of the ones they did have were taught by sports coaches and not particularly beneficial so I ended up taking the excellent history and social science classes offered instead. This, combined with my prevalence for skipping school, meant that I was not prepared to apply to a four year institution after graduating, especially in the field I wanted to study. 

I ended up signing up for community college almost on a whim and was instantly thrilled with the options for classes I could take— I was able to take astronomy, could finally start learning math for real, and even had a wide variety of fun and useful classes like photography, women’s health, and even Philosophy of Lord of the Rings! I made a ton of friends, got straight A’s, and built the foundation for transitioning to a four year school. When the time came to apply to schools during my second year I had a great support network of professors who wrote me letters and helped me get into the astrophysics program I had dreamed of. I never could have done it without my experience at MCC to help set me on the right path.

Jen

Unlike Rose and Adriane, I didn’t start out at a community college. I went to a 4-year university straight from high school, I grew up in an area with a lot of state universities and picked one close to home. My high school had close ties with our local community college, the College of DuPage (COD). I had friends that would take classes there when they had moved passed what my high school offered or to get more technical training. There was a program where students could be at our high school for half the day and the other half would be spent at COD in a special program. 

I attended community college through a summer course – calculus. I was trying to stay ahead of my studies, to remain on track to graduate on time but couldn’t afford (time and money) to go to a summer class at my 4-year institution while working. The class was something wild like 3 hours every day starting at 7 am. The class size was incredibly intimate, maybe 25 students in the room for a month long course. At my 4-year institution all general courses were over 100 students during the lectures. The smaller course setting enabled me to meet new people, feel comfortable asking questions, and really foster a strong relationship with my peers and the material. I struggled with precalculus my first year of undergraduate — when I excelled at it in high school. This was incredibly frustrating and really made me feel like I would fail calculus. Community college helped me realize where I learn best — small settings where I feel comfortable. 

Not long ago, my mom returned to college by starting a program at COD. She had been a stay at home mom for almost 20 years and needed to get back into the workforce. She took courses over several years to become a medical biller and coder. 

If you are interested in going back to school, taking courses, or beginning at a community college, click the link below to find a community college near you in the continental U.S.: Community College Finder

FORCE11 Scholarly Communication Institute

Sunset on the UCLA campus

Rose here-

This summer I attended the FORCE11 Scholarly Communication Institute. This was a cool opportunity because I have been to many research-focused conferences and workshops, but I’ve not yet been to one that focused on scholarly communications. Scholarly communications refers to the process of publishing and communicating research, from arts and sciences to humanities. FSCI is unique because it brings together students, researchers, librarians, and publishers. Some of the sessions during the week were about new methods for making your research reproducible, from research methods to repositories for code and data. Others were on aspects of the publishing industry and how we can make research more accessible across the divides of language barriers and paywalls (when a paper is only accessible if you or your institution has a subscription to the journal it is in).

Exploring the botanical gardens at UCLA

The workshop was set up so that each participant would choose three courses throughout the week, one in the mornings and two in the afternoons. The course that I enjoyed the most and felt gave me the most practical knowledge to bring back was called “The Scientific Paper of the Future”. This course talked about various aspects of the research and publishing process in the context of open science. I was familiar with data management plans and depositing data in repositories, but there were some aspects that were new to me. For example, there is now a trend of also depositing code and software packages developed as part of research in repositories, and also writing journal articles to document and describe them. Another is documenting your workflow. There are a few websites to do this now, which involves writing up a plan for who on your team is going to do which aspects of research, and then documenting this as you go. Workflow documenting also includes writing down every detail of your method and even the experiments and workflows that did not work, to help people avoid repeating your mistakes and instead building on your work.

Exploring the botanical gardens at UCLA

This was a new type of workshop for me, but it was really great to get out of my comfort zone of interacting mostly with fellow scientists to meet librarians and publishing experts who are also interested in open science for everyone.

American Geophysical Union 2018

Rose here –

Last December I got a chance to do two things I have never done before: Visit Washington D.C. and attend the American Geophysical Union (AGU) fall meeting. The AGU fall meeting is one of the biggest geology conferences and is held every year in December. This year they broke records with 26,000+ attendees and 28,000+ abstracts submitted!

Here I am with my advisor, Dr. Wade Bishop from the UT School of Information Sciences, at the Data Help Desk in the exhibit hall, where we spent most of the conference.

My advisor was working on a project which required surveying attendees of the meeting and he was able to pay for me to come as well to help out with that. While I had to spend much of my time there at the Earth Science Information Partners (ESIP) Data Help Desk in the exhibit hall, I was able to get away and attend some talks and poster sessions. The project I was helping with was asking scientists who came for help at the Help Desk about their experiences, so we can figure out how to make the Help Desk more relevant and helpful for scientists at future meetings.

I flew in a whole day early so I could explore around D.C., because I knew once the conference started there would be so much going on it would be hard to get away. It was quite cold out so I bundled up in my jacket, hat, and scarf and headed out to see what I could find. I headed toward the National Mall, excited to finally visit the Smithsonian and all the memorials. I walked all the way to the far end of the mall first so I could see the various memorials. I visited the World War II, Korean War, Vietnam War, Lincoln, and Martin Luther King Jr. memorials. As a geologist, my favorite was the WWII memorial because of the variety of rocks used in cool ways. I also learned that besides the regular Vietnam War memorial wall, there is a memorial to the women who served the country and made great contributions during that time.

One of my favorite exhibits at the National Museum of Natural History. All of the minerals in this case are specimens of Corundum, also known as Ruby or Sapphire.

Next I visited the National Museum of Natural History. I had seen it in movies, but I was excited to see all the exhibits in person. This being AGU week, the most packed section was the rock and mineral exhibit. There was a line to even get in, and once in the excitement in the room was quite noticeable. It was so fun to see everyone excitedly discussing the different minerals, where they came from, and why they looked the way they did. These are the things we do for fun when you get a bunch of geologists together!

At the conference, while I did spend most of my time working in the exhibit hall, I had picked a few sessions of science talks to attend. The cool thing about conferences like these is that there are many simultaneous sessions in multiple fields of geology, so I could go see talks on anything I want. I often hop around to talks in fields other than what I work on, but since I had limited time to see talks this time I picked a few planetary science sessions to go see, and a few in areas that are important to me, like promoting equity and inclusion and dealing with sexual harassment in the geosciences. One of my favorite sessions was a lunchtime special session on the last day. AGU held a session celebrating the start of their 100th year, where they had speakers from many of their 25 sections give talks on how our scientific understanding has changed in the last 100 years in their field.

Visiting the map collection at the Library of Congress!

One of the coolest things I got to do was on the last day, right before we left D.C. My advisor knows someone who works at the Library of Congress (LOC) with the map collection, so we got to go and get a behind the scenes tour at the LOC. I loved seeing all the old and unusual maps they have there. The room where they store the maps is as long as 3 football fields! As a geologist it was especially exciting to see their collection of notes and maps from Marie Tharp, who used data from instruments on research ships to produce the first scientific map of the seafloor. This map was important because it showed us where the seafloor was spreading and gave us more evidence for plate tectonics.

I am so glad I was able to go to AGU in D.C. for the start of their Centennial celebrations, and I look forward to going again!

Information Sciences: What are they?

Rose here –

I study information sciences at the University of Tennessee. Why is it called information sciences and not information science? The information sciences are a very broad field, containing many other fields such as data management, knowledge management, librarianship (public, academic, and specialized), archiving, museum studies, and information-seeking behavior studies, among others. This is really true of most sciences, as biology, geology, physics, and chemistry all contain multitudinous specialized fields within the broad discipline.

Here at UT, we have some undergraduate and doctoral students in the School of Information Sciences, but the majority of the students are in the master’s (MS) program. This is because in the library and information sciences, an MS is considered the terminal degree. It is a professional degree, meaning that rather than a focus on research and producing a thesis or dissertation like many grad school programs, there is a focus on learning theories and practical skills that librarians and information professionals need to do their jobs.

Standing in front of the library at Central Washington University, where I got my undergrad degree in geology. This library was one of my favorite places and I spent many hours there studying or just reading in a quiet corner.
Librarians at many colleges and universities have faculty status, even though they are not doing full-time teaching or research. This is important because the services they provide are integral to all of the research and teaching that occur on campus. Many information professionals and librarians, especially academic librarians, already have graduate or undergrad degrees in other fields, which gives them a good foundation for knowing the potential information needs of the patrons they serve. Many librarians spend some amount of time on their own research, either within the information sciences or in other areas they have expertise in.

I also have a previous graduate degree, an MS in planetary geology. I decided to continue and get another MS in information sciences rather than try to find a job as a geologist right away. I knew I did not want to get a PhD and be a professor doing full-time research or teaching. However, I did want to find a way to stay involved in the planetary research and teaching community in a support role. With a degree in information sciences, I could work as a GIS specialist (What is GIS?), a technical information or data management specialist, or as a librarian specializing in an area related to planetary science. These are all jobs that exist within organizations such as academic and specialized libraries, USGS/NASA/NOAA, and private planetary science institutes and industries.

One of my favorite holiday activities: sitting by the fire reading about awesome women in science!
Since joining the School of Information Sciences last fall, I have had several opportunities to explore career options in this field. I got a position this as a Community Fellow with the Earth Science Information Partners (ESIP). ESIP receives funding from NASA, NOAA, and USGS, and contains many member organizations who are working to improve all aspects of information and data management in the earth sciences. In my position as a fellow I get to attend their two annual meetings for free and to participate in any of their clusters (groups focused on a specific topic), as well as working more closely with one particular cluster. This gives me the opportunity to see what is going on in earth science data, as well as find new people to collaborate with. I have also been able to participate in a couple of research projects focused on Earth and planetary science data. I got the chance to travel to the American Geophysical Union meeting in Washington DC in December to collect data for one of these projects. I had never been to Washington DC before, so that was a cool experience. I will even get to travel to the 4th Planetary Data Workshop in Flagstaff in June to present some of my research, so stay tuned for a post about that!

Drumheller Channels

Rose here –

The Columbia National Wildlife Refuge was designated as a National Natural Landmark in 1986. The landscape here is amazing because while it is a desert or shrub-steppe environment, it has been amazingly eroded and carved by water from the giant Ice Age floods. This influx of water has allowed plant and animal life to flourish here, and also allowed humans to farm the land. For more, click here.
A couple of years ago my mom and I took a road trip to eastern Washington state to visit Drumheller Channels in the Columbia National Wildlife Refuge. This is an area containing giant basalt columns, part of the Columbia River Basalt flows, as well as some of the landscape known as the Channeled Scablands, remnants of the catastrophic Ice Age floods (check out the Ice Age Floods Institute for more info).

The Columbia River Basalt Group (CRBG) is a large igneous province in eastern Washington. Large igneous provinces are usually made of very low viscosity (runny) lava which has erupted from fissures in the ground and spread out to cover a large area. The CRBG is a series of lava flows (more than 350!) that cover an area of about 163,700 km2 (63,200 mi2). These lava flows altogether are more than 1.8 km (5,900 ft) thick. These flood basalt eruptions occurred from about 17 million years to about 5 million years ago

This is a view of the channeled scablands landscape, where you can see the tops of different coulees and lava flows in the distance. This land is crazy rugged to drive through!
As basalt cools, it forms a hexagonal pattern on the cooling surface exposed to the air, similar to the pattern you see in mud as it dries. From the side this pattern looks like rows of columns next to each other, and beautiful landscapes made up of several stacked flows of this “columnar basalt” are a common sight as you drive through eastern Washington. The other major component of the eastern Washington landscape, the Channeled Scablands, are the result of flooding that occurred toward the end of the last ice age. They are called Channeled Scablands because the landscape consists of many interconnected channels and coulees and appears very rugged. This landscape has turned out to be one of the most important pieces of evidence in shaping our current understanding of how geological processes have shaped the surface of the Earth.

Here I am hiking over to some of the columns so you can get a measure of scale of these features.
Before J Harlen Bretz started studying this landscape in the 1920s, geologists thought all Earth processes were extremely slow and gradual in making any changes in the landscape. This was a reaction to the suggestion by young earth creationists that the earth was formed rapidly by catastrophic events. The response of geologists to this idea was to immediately dismiss any hypothesis that the landscape had formed rapidly and insist that everything had happened very slowly and gradually. J Harlen Bretz became interested in some interesting erosional features he saw in eastern Washington and began doing intensive fieldwork in the area in 1922. As he continued to map and record his observations of the features he saw there, he became more and more convinced that this landscape had not been formed gradually but had been shaped by giant floods from further east. There are giant ripples here, giant channels and coulees, and giant “potholes” where rock has been plucked up by water rushing past. These features could not be explained by very slow and gradual erosion. Today, geologists understand that while many features are formed slowly, the landscape has also been formed in places by catastrophic events, some of which we can see today in volcanic eruptions, earthquakes, and tsunamis.

Here I am standing next to some of the best-shaped columns, which have been carefully separated from the rest of the basalt flow and stood up on their own so you can see the hexagonal shape.

If you want to know more, here are a couple of good books to start with. Check with your local public library!

More References:

We knew we had made it when we saw the giant basalt columns in the distance. Check out the pictures of me next to them to see how big they really are!
Close-up view of the basalt columns from the side.
Close-up view of the basalt columns from the top.
Standing next to the column wall so you can see how large they really are!
The sun was in my eyes, but this place was so pretty I had to get a picture with it. Thanks to my mom for all the awesome photos from this trip!

Can you dig it?

Rose here –

In the geology gallery at the museum, scientists explore their own research and help visitors better understand the process of fossilization. Photo from @EPS_UTK on Twitter.

At the University of Tennessee in Knoxville, we have a natural history museum on campus called the McClung Museum of Natural History and Culture. Every year they do a family fun day event called Can You Dig It? where scientists from different departments on campus come and set up various activities to engage families. The Earth and Planetary Sciences department always shows up with several fun activities for families and kids of all ages. This year we had quite a few things going on.

Outside we had two tables of planetary activities. One table was talking about volcanoes and how to tell the difference between rocks formed by volcanic eruptions and rocks formed by meteorite impacts. We had real meteorites and impact deposits, as well as some volcanic rocks, so the kids could hold them all and really see the difference.

Other graduate students outside with experiments dealing with impact craters for visitors to explore!

I was at the other planetary table, where we had some more meteorites and 3D-printed models of actual impact craters on the moon and Mars. We used these to explain how the shape of impact craters change depending on the size of a meteorite and the speed at which it impacts. We also had a tub of flour with a thin layer of cocoa powder on top. There were several marbles and small balls, and kids could hold one above the tub and drop it to make their very own impact crater. The layering using cocoa powder allowed us to show them how ejecta blankets work at real impact craters. An ejecta blanket is made of rocks from the impact site being blown up and out of the crater and landing to form a “blanket” surrounding the crater. In the tub, you could see flour on top of the cocoa powder after the impact, showing how buried layers get exposed at the surface surrounding impact craters.

Graduate students have a STEAM (Science, Technology, Engineering, Arts, and Mathematics) for students and visitors to get more information about a variety of topics. Photo from @EPS_UTK on Twitter.

Inside the museum, we had a table where people could bring in rocks or fossils they had collected and geologists or paleontologists would help identify them. This is a really popular thing, and some people bring loads of rocks they’ve been collecting all year.
If you have a local museum, make sure to go check them out. Local museums are often cheap or free and also host fun events like this one!

Skype a Scientist

Rose here –

I recently got to participate in a different kind of outreach activity. Instead of going to a classroom or museum and talking to students in person, I got to share my research with students in a classroom all the way across the country via Skype! I had signed up with an organization called Skype a Scientist earlier this past fall.

I didn’t take any pictures during the session, but here are the rocks I used to answer their question “what are your favorite rocks that you’ve collected?” Clockwise from top left: a conglomerate a friend sent me from California, a jar of Mount St. Helens ash my gramma collected off her car the morning after the eruption, a piece of Columbia River Basalt I collected in undergrad, a gypsum rose from Morocco (my parents bought it in a shop in Oregon), a large quartz crystal my gramma collected in the Mojave desert, a piece of rose quartz I collected in the Sierra Nevada, and a piece of amethyst my roommate brought back from Uruguay.

This organization matches scientists with teachers who would like to have a scientist talk to their classrooms about their research, maybe related to something they’ve studied in class. Because it’s all conducted via Skype, the scientists and classrooms could be anywhere. I live in Knoxville, TN and the 7th grade classroom I connected with is in Seattle, WA. This was fun because I grew up in the greater Seattle area, so I could talk about the local geology. I got to share with them how growing up in the shadow of volcanoes, experiencing earthquakes as a kid, and learning about the glacial ice sheets that used to cover the land where my family now lives all inspired me to love and learn about geology.

My thesis research here in Knoxville has been on the geomorphology of Mars, which was perfect because this class was just finishing up a unit on Mars geomorphology. The teacher contacted me a couple of weeks before we met via Skype. I sent them some info on my research and the students sent back a list of questions they had for me. The topics of these questions ranged from undergrad vs. grad school to questions about Mars to questions about my favorite rocks or field areas. I was really impressed by the thought they put into these questions and the range of things they were interested in. During the Skype session, I started by answering as many of these questions as I could. This took about half the class time, so the teacher and students then had a chance to ask follow-up questions. The students were very engaged and interested in what I was saying. I was a little nervous beforehand that I wouldn’t be able to answer their questions or the technology would fail on us, but it went really well and we all agreed it would be fun to do again. If you are a teacher or scientist I would totally recommend checking it out!

If you are interested in signing your class up, or a researcher interested in talking to a classroom, you can sign up for Skype a Scientist here!

Grand Canyon Trip

Rose here –

Standing on a rock at Ooh Aah Point, about a mile down the South Kaibab Rim Trail.
A year ago I got the chance to visit the Grand Canyon National Park. I had been there once as a toddler, but of course I didn’t remember it, so I was very excited to have the opportunity to go again now, especially since I’ve been studying geology for a few years. The Grand Canyon is like Disneyland for geologists. There are SO many cool geologic processes and so much geologic time represented there (click here for a fun read on the geology).

Hiking down the South Kaibab Rim Trail and looking back up at the South Rim.
We were staying in Flagstaff, AZ for a conference, but my colleague and I had a free day before it started and since the Grand Canyon is only an hour and a half away we decided to just hop in the car and go. We started off early in the morning so we could try and beat the heat. When we arrived we headed straight to the rim.
It was one of the most exciting moments of my life. I had seen pictures of the canyon, but nothing prepared me for what it was actually like to stand there in person. We walked up to the rim with our eyes on the ground so we would see it all at once. When we got close enough we looked up and were utterly speechless for at least a minute. It was so worth it. The Grand Canyon is so big. Like, SO BIG. Apart from all the cool geology, it is a really amazing view.

Sitting near the edge by the Geology Museum (I was further back than it looks!).
One of the coolest things about the Grand Canyon (besides the size) is how you can really see textbook examples of geologic concepts displayed in a way that anyone can see. For example, the Great Unconformity is a famous example of an unconformity – a place where rocks were deposited or uplifted and then some time passed and/or erosion occurred before more rocks were deposited. The Great Unconformity is the place where the beautiful sedimentary rock layers that make up most of the Grand Canyon are deposited on top of older metamorphic and igneous rocks. The distinct sedimentary rocks layers we see exposed in the canyon help geologists understand what the environment was like at different times in the past. After all these rocks were deposited, the canyon itself was carved out by the Colorado River starting at least 6 million years ago (click here for more information), resulting in the Grand Canyon we see today.

A note from the editor (Jen): I wholeheartedly agree with this description, the view is beyond breathtaking. It takes a while to soak in the awe inspiring beauty. Time is so often taken for granted but when you can see so much time in the rocks, it gives you a new perspective.

A view of the Grand Canyon from near the visitor’s center, looking north from the South Rim.
Me standing at the South Rim, with Bright Angel canyon behind me.

Freedom Schools Program

Rose here –

A picture of my teammate Katie and I with our Freedom School scholars. I am sitting second from the left in the back row.

This summer I got the chance to hang out with local elementary school students and do cool science experiments. I was one of several volunteers from 500 Women Scientists KnoxPod, an organization dedicated to science outreach and opportunities for fellowship for women scientists, and we partnered with the local Freedom Schools Program, a national summer literacy program for at-risk and minority youth. As part of our partnership, we came up with some fun experiments and demonstrations of various scientific topics to get our students engaged and interested in science.

Our main goals were to show the students that anyone can do science and that the ideas of science affect our daily lives in many ways. Since we had never done this before, it involved a lot of Google searching and trying to find ways to do experiments that were fun and doable for a range of ages and abilities of students. It was helpful that the students we worked with were divided into upper and lower elementary age groups, so we could have some activities involving more reading for the older kids. But both groups were very impressive with their understanding and retention of the ideas, even remembering things we had talked about much earlier in the summer!

One of the most rewarding moments was when one of the girls who had seemed kind of shy and reserved during the earlier sessions came up to me one day and told me that she wants to be a scientist when she grows up! By the end of the summer there were other kids too who would cheer when I walked in, declare that science was their favorite subject, and try to sit as close to me as possible. This made me feel like all the hours spent preparing lessons were totally worth it. I had never done any sort of K-12 classroom presentation before so it was also a really great opportunity to get more practice explaining the concepts of science in an accessible way.

Below are pictures from when we made a pendulum and added paint to make some art and show patterns of pendulum swinging and their causes.