Aaron Avery, Biostratigrapher

Tell us a little bit about yourself.  My name is Aaron Avery, and I am a geologist who specializes in calcareous nannofossil biostratigraphy. I spent 6 years working as a biostratigrapher in the oil and gas industry, often working offshore on oil drilling installations in the Gulf of Mexico. More importantly, I am a father of one beaming sunray of a 4-year-old girl named Jori. I love spending time showing her around the world and cultivating the same curiosity and wanderlust that has gripped me my entire life. I’m a nerd at heart who loves science fiction and fantasy, but that never stops me from enjoying a great day outdoors; fishing, going to the beach, and hiking are always on the table. My love for adventure led me to sail with an NSF funded science outfit known as the Integrated Ocean Drilling Program (IODP). As I write this, I am currently sailing for the second time. With IODP, you get the experience of a lifetime through deep ocean drilling where you recover cores of sediments and basic rocks that are unique to the world. It is pure, unadulterated science for two months. I don’t have enough room here to talk about all of the reasons why sailing with IODP is amazing, so I’ll say this: it is the most incredible scientific experience of a lifetime where you will meet brilliant scientists, make connections, and try to answer some questions about the Earth’s mysteries. For anyone who has the stomach for being on a ship and away from home for two months, I highly recommend it.

This photo is staged in a diner. You can see Halloween decorations in the background. The people in the image are a mid-30s white male with glasses and a beard. A four-year-old white girl sits to his right, making a silly face in the picture. The little girl is wearing a Halloween costume of a black cat. They are father and daughter.

What kind of scientist are you and what do you do? I’m a trained biostratigrapher who specializes in calcareous nannofossils, which are tiny marine algae that calcify shells around their cell(s). I got my MS in Geology from Florida State University and used my micropaleontology specialty to land a job with a consulting firm working as a biostratigrapher for oil companies. The company was based in New Orleans, LA, which was a lot of fun, but the rigor of having to go offshore to an oil platform on a day’s notice, missing holidays, and missing important milestones in my daughter’s life really wore on me. The solution was to move to Tampa, FL and start my PhD at the University of South Florida. I’m hoping to combine my knowledge of biostratigraphy and paleontology with a more advanced background in marine geology and paleobiology to study long term climate fluctuations and turn that into informative research for conservation purposes.

What is your favorite part about being a scientist, and how did you get interested in science? My favorite part about being a scientist is always having an interesting question to try to answer. That is also the most difficult part of science for me. I have an incredibly hard time deciding which project should receive priority. I just want to study anything, take advantage of any opportunity that comes my way. I’m interested in climate science, broadly. My specific focuses are biostratigraphy, climatology, stable isotope geochemistry, evolution, conservation paleobiology, and marine geology.

My path into science included a lot of change of major forms. I began my college career as a biology major with the idea that I would go to vet school. After a year, I was lured into being an English major by my love for writing. From there, I thought I would follow in my mother’s footsteps and become a high school teacher, so I added an education major to my program. Just one semester passed, and I quickly realized this was not the path for me. In the meantime, I had been doing very well in Earth science elective courses and fell in love with Earth science. I switched my major to geography with a focus on environmental science and picked up a geology minor for good measure. That is where I found my true passion. I decided I would start applying for graduate school and pursue a masters in geology. After a year of rejections, I finally landed a spot at Florida State University where I would earn my MS in geology with a focus on micropaleontology.

A picture of a large ship. The ship is blue and you can see that it is named the ‘Joides Resolution’. To the right of the picture (stern of the ship) you can see a helicopter pad. Towards the bow of the ship, you see a large derrick rising towards the sky. The derrick is where all the drilling equipment is set up for use.

How does your work contribute to the betterment of society in general? I mentioned above that I worked in the oil industry as a biostratigrapher. This contributes directly to the production of fossil fuels to keep society running. However, this was always a means to an end, and after a while I wanted my work to be more meaningful than whatever the current price of a barrel of oil happened to be. This led me to start a PhD at the University of South Florida and focus on conservation paleobiology: research that will help me (hopefully) directly inform policy makers and the public about the best practices for preserving our world. I also hope to be able to provide unique insight and perspectives on biologic change through time that will help us make impactful decisions that have real positive impacts on the environment.

What advice do you have for up-and-coming scientists? If you want to be a scientist, my best advice is to never stop asking questions, and never be afraid to be wrong. Cultivate a passion for learning and discussion that allows you to be open minded in all facets of your career. Understand that science isn’t always glorious and that sometimes you have to grind to get to the things/answers you are passionate about. It may sound cliché, but network in whatever way is comfortable for you and cultivate relationships as they will bring opportunities to your doorstep. 

Never succumb to imposter syndrome—you deserve to be here as much as anyone, and you earned it! As I write this, I’m sailing for the second time with the Integrated Ocean Discovery Program (IODP) and everyone, absolutely everyone, is brilliant. It was daunting the first time I sailed, but I learned on my first expedition that intelligence isn’t something to be afraid of, or to compare yourself to, it is a lifeline to a world of possibilities and learning. Everyone has something wonderful to offer, and you will too!

A mid-30s white male wearing a light brown long-sleeve shirt, a black and gray striped knit hat, glasses, and a blue surgical mask. He is standing over a core section of sediment drilled from a deep ocean basement. He is sampling this core using toothpicks in order to make smear slides.


Ashley Ramsey, Staff Geologist for Geosyntec Consultants, Inc.

Professional Headshot.

What is your favorite part about being a scientist and how did you get interested in science in general?
My favorite part about being a scientist, why I chose science, and particularly why I decided to be an environmental consultant, is that the field is constantly changing, and there is always something new to learn, discover, or develop. Through my obtaining my undergraduate geology degree at Baylor University and my masters geology degree at The University of Tennessee, I was never sure what career path to take, but I knew that I liked to learn and do so at a very quick pace. Since beginning my consulting career just over one year ago, I have had the opportunity to study a multitude of contaminant impacts and remediation techniques for groundwater, porewater, soil, and sediment. Not only this, but every day I am fortunate to collaborate with scientists across the United States on a daily basis.

Step 1, wear proper PPE😊 Work can be a bit messy sometimes, but that’s half of the fun, right?!

In laymen’s terms, what do you do?
As a consultant at Geosyntec I conduct environmental contaminant investigations and remediations concerning chlorinated solvents, petroleum, metals, pesticides, and/or emerging contaminants. These contaminants are sourced from many historic and modern day industrial activities like dry cleaning and petroleum storage and sales among many others. My work over the last year and a half has been on sites located across state of Florida and have involved in soil, sediment, porewater and groundwater monitoring and sampling; contractor oversight; permitting; and the development and execution of proposals, remedial designs, and reports.

How does your work contribute to the betterment of society in general?
My work provides knowledge to clients and the public about the state of their environment and what steps we can actively take to better it. As environmental consultants we conduct investigations to ensure environmental contaminants are not migrating away from their source and that concentrations are not increasing. This work is extremely important as it ensures no harm is coming to the members of our community from the investigated contaminants as they go about their day to day lives.

What advice would you give to young aspiring scientists?
Keep at it! Sometimes you will have no idea which path to take and may become overwhelmed by those around you who already have their path determined. Take on a new project, study a new field, take that random class or field trip. By exploring every possible avenue, you will find your niche.

Measuring surface and pore water temperatures to provide a line of evidence for groundwater upwelling in a Jacksonville Creek.

Mattie Jensen, Microbiologist & Technical Manager

I am a Scientist.

It may be a little cliché, but like all scientists I know, I was always interested in science. It was one of those subjects in school that came naturally to me. By the time I graduated high school, I had taken all of the advanced science courses offered by my school, plus two college-level courses. You would think someone this driven by science would immediately jump into a science degree in college, right? Nope.

I attended college for graphic design. After a semester, I changed my major to photography. A couple semesters later, I changed my major to psychology – and that is where my real journey began. Eight years of hard work, studying all night while working multiple jobs to support myself through school, and I finally had my degree – my major was psychology, my minor was biology. I focused on a neuroscience approach to addictions and wanted to be a drug and alcohol therapist.

Along the way, I found myself working as an office manager for a microbiology laboratory. The work they did fascinated me, as I had many happy flashbacks to the courses I took in high school and college. As I worked my way through school, I also worked my way into the laboratory. Upon graduation, I jumped into a rigorous training program to become a microbiologist, led by an incredible mycologist and a snarky clinical bacteriologist. Seven years later – I run an environmental microbiology lab outside of Chicago for this company.

Long story short – plans change, but who you are at your core and what truly excites you remains the same. Science was always a part of me. I was always the kid questioning everything, asking Why and How, solving problems logically and methodically, taking horrible notes that somehow made sense to only me. I was weird. I got made fun of a lot. And I’m still weird. But I made a career out of it, so I’m really not complaining.

What Do I Actually Do?

I am a microbiologist, specialized in the indoor air quality, water quality, and industrial hygiene worlds. I don’t analyze any human-based samples, but I am responsible for keeping a lot of people safe. From pharmaceutical production, to the mold growing under your kitchen sink, to the water grandpa Joe uses to take showers at his assisted living facility… we’re on it.

Our clients go out and take a variety of sample types, and we analyze them for any potential pathogens that may be present. We do old-school, bench-top, human-driven science. We aren’t relying on fancy machines to analyze things for us, and sure our reference materials may be a couple decades old, but what we do is tried and true.

Why is this important?

Bacteria and fungi are amazing and mind-blowingly smart. They’ve been a part of our world since it began. Outbreaks happen, yes, but the type of work an environmental microbiologist does is all about being proactive. If a pharmaceutical company is producing medicine in a contaminated environment, we stop it from reaching you. If grandpa Joe is being exposed to potentially pathogenic bacteria in his water, we catch it and help remediate it. And even though your house is spotless and you would eat off of your floors, we highly suggest you don’t because you have six different types of mold growing under your sink.

The environmental world of microbiology is full of unsung heroes. If you don’t work for the CDC, no one really knows what you do or really knows why it’s important. But that’s okay, we’re all a bunch of nerds and don’t want the spotlight anyway. I still want to get involved in local colleges and reach out to inspiring young scientists because this world is dying. What we do isn’t even really taught in schools anymore, as more and more schools focus on clinical laboratory sciences and molecular research using expensive machines. Not saying any of that is bad, learning more and more about the world around us is a huge part of science, right? But we’re already fighting an anti-science, anti-vaccine movement right now, let’s not also let the bacteria around us win and party with the re-emerging viruses.

Are you a Scientist, too?

If you, too, are a kind-of-weird person, always asking why and how, never leaving any problem unfinished, maybe you’re a scientist too. Even if you can’t make up your mind in what you want to do with your life but you kind of relate to Mr. Spock on a personal level, maybe you’re a scientist too. If you are interested in a scientific field, do tons of research before settling down! There’s more to microbiology than clinical laboratories. I’d be happy to connect with you and tell you more!

Connect with Mattie on LinkedIn by clicking here!

Paul Giesting, Environmental Geologist

Working on clay – carbon dioxide experiments at University of Illinois
No, I really don’t have a better picture of me working on basically anything ever.
Today I’m a consultant investigating and cleaning up soil and groundwater contamination (click here for more information); I also have a podcast called That’s So Second Millennium where I talk about science, geology and physics in particular, as well as religion and philosophy.

As far as how I got into geoscience in the first place… I was always that little boy who was really interested in math, and that expanded to include chemistry and minerals in high school. Over time the elements came to have personalities for me. I love color, so minerals were natural things for me to love as well. Years later, when I taught mineralogy, I assigned lists of elements – oxidation states – colors for quizzes. Unfortunately, it seems that students never enjoy anything as much when they’re going to be tested over it as I did when I was reading it for fun.

Hopefully you’re reading this blog post for fun, though, so let’s give it another go.

Elements, color, and minerals
You may have picked up in high school or college chemistry that the periodic table has the shape that it does because of the quantum behavior of electrons. They sort themselves out into shells and subshells. The elements in each row of the periodic table have their outermost electrons (in ground state, the lowest energy configuration) in a given shell: 1 in the first row, H and He, 2 in the second row, Li to Ne, and so on. Each shell has one or more subshells–those are those s, p, d, f letters you learn about.

How does that translate to light and color? Well, light comes to us as little bits of energy called photons. The whole electron structure business is about energy, and the jumps in energy electrons need if they are going to jump from one subshell to another. Visible light is made up of photons with a particular range of energies. Those energies happen to be about the right size to coax electrons to jump around inside the d subshells of atoms big enough to HAVE d subshells, but not completely full ones. The elements that fit that description are down there in the low spot in the middle of the periodic table, the transition elements, or you might nowadays call it the “d-block.” The rare earths, or lanthanides and actinides, or “f-block” elements also work.

If you run your eyes along the top line of the d-block, you see all in a row chromium, manganese, iron, cobalt, nickel, and copper. All of those are important elements in geochemistry and in industry, iron of course being a major element and the most abundant. They also all happen to be “willing” to lose variable numbers of electrons, go into different oxidation states, and exhibit different colors:

As you can see with cobalt and nickel, the oxidation state is not the only thing that controls the color. The ligands – molecules or ions – bonded to the metal change the behavior of the electrons and produce a whole spectrum of colors. Thus, this table is only an attempt to note some of the most common colors. You can explore the subject in a number of different directions, for an example click here.

Meanwhile, most compounds of non-transition elements, especially the “s-block” elements to the left of the periodic table like sodium and calcium, are colorless or white. It takes more energy to jerk around s and p electrons, and those energies correspond to ultraviolet photons.

Having d or f-block elements is not the only way for a mineral to wind up colored, by any stretch, but it is very common. Here are some of my favorite colored minerals and the elements that make them so, along with mugshots from mindat.org:

Crocoite, Cr
Spessartine, Mn
Fayalite, Fe
Atacamite, Cu
Scheelite, W
Phosphuranylite (yellow), U and Metatorbernite (green), Cu is more abundant than U in this mineral

Uranium and nuclear waste
My criteria for choice of dissertation topic and therefore advisor and graduate school essentially came down to this. When I ran into Peter Burns (yes, Simpsons fans, I learned about uranium from Dr. Burns, go figure) at Notre Dame, and found out that I could work at the lunatic fringe of the periodic table, I decided to go for it. I’d recommend broadening the thought process beyond just the subject matter if you’re choosing a graduate program, but I can definitely report that uranium geochemistry is not boring.

At that time, 15 years ago, this place called Yucca Mountain in Nevada was in the news as the one place under consideration for storing the U.S. high level nuclear waste from power plants. I can’t possibly go into all the issues surrounding high level nuclear waste – weapons work generates different wastes than power plants, there’s the whole reprocessing question, the security problem so that waste doesn’t get stolen and made into dirty bombs, it goes on and on.

Let’s focus on a few key issues. Whether it was the best idea or not, nations around the world built quite a few nuclear power plants. We have dozens here in the U.S., and NONE of their high level waste has ever been permanently disposed of.

Although nuclear waste is nasty stuff to deal with, nuclear power has one big advantage today: it gives you juice without having to burn fossil fuels. Wait, let me make that two advantages: unlike renewable energy from solar and wind, nuclear power plants provide baseline power regardless of the weather. So it might not be the best solution to move completely away from nuclear power just yet.

(Really, they need to get fusion plants working so that we can stop dealing with uranium, but we’ve been waiting an awful long time for that. We may have working Star Trek transporter beams before we have fusion reactors at this rate.)

So we really, really need places to put all this high level waste safely. That means we need to understand how uranium geochemistry works well enough to put together reliable models. That means we need to know what uranium species are in solution at particular geochemical conditions.

Uranium is a weird element – I did not call it the lunatic fringe of the periodic table for nothing. Uranium(VI), the oxidation state of uranium when it’s in equilibrium with all this nasty oxygen stuff we have in Earth’s atmosphere, is nearly always in the form of a weird complex cation called the uranyl ion, UO22+. Those two oxygens stick off into space to make this sort of three-ball dumbbell.

You may be aware that there are a lot of carbonate minerals… most metal carbonates are insoluble in water. Not the uranyl ion. Uranyl carbonate is mad soluble. There are also uranyl hydroxide ions in water solution at a variety of pH conditions. All this was known reasonably well from studies dating way back, some in geology (especially related to ore deposits of uranium) and some from chemical engineering. So in the run up to deciding on whether to do the Yucca Mountain repository or not, these existing studies were used to model the geochemistry and how long it would take the uranium to escape and how far it would go. Like all engineers and bureaucrats, the people involved were pretty confident about their answers.

For a trace element, uranium forms a lot of distinct minerals. That tends to happen when your chemistry is weird and you don’t fit into the sites of other elements in ordinary minerals. There were and are many of these minerals whose structures are not yet known. At the time, my research group (not me personally) was interested in a weird pair of minerals called studtite and metastudtite. Their structures weren’t known. Their bulk chemistry seemed to indicate peroxide ions, which would be very strange; there aren’t any other peroxide minerals, because the peroxide ion is really unstable. As I recall, Peter didn’t think they were really peroxides once they were crystalline, although he might remember it differently.

In any case, as it turns out, you can use peroxide to synthesize studtite and it is, in fact, a peroxide. The peroxide must be generated by radioactivity chewing up water molecules to make peroxide in the intense environment around other uranium minerals.

But as it turns out, on the way to making studtite, the real science happened.

If you jack uranium and peroxide into solution at certain pH conditions, you get crystals of studtite. At other conditions… well, you get a solution, and if you evaporate it down, depending on the counter ion (you need some cations like sodium, lithium, etc. for charge balance) you get something delightfully frightening:

Uranium… peroxide… buckyballs.

Nobody knew these things existed. They’re actually pretty stable in solution. In a nuclear waste repository, like oh say Yucca Mountain, with MAD amounts of radiation from not just uranium but a whole bunch of hot, hot fission products, there could be oceans of peroxide and the conditions could be just right for making these things, which would traipse off into the Nevada groundwater and do things those previous geochemical models did not suspect.

Yucca Mountain died because of politics, not because of these studies. It may be just as well. Maybe we dodged a bullet there. In any case, we need to do something else with all that waste, and there may be some more craziness lurking out here on the lunatic fringe that we’d better put into our models before we pull the trigger.

Carbon sequestration
For my first postdoc, I studied the interaction between clay minerals and high-pressure carbon dioxide. This research was funded by Shell in the Netherlands and was aimed at discovering whether carbon sequestration in deep aquifers is a viable option. An aquifer is a permeable rock with water in it, and deep aquifers have caps of less permeable rock called aquitards. Clays tend to be the dominant minerals in these aquitards. Many clays have the ability to expand or contract their crystal lattice and are called swelling clays.

Carbon sequestration involves scavenging carbon dioxide from power plant emissions and compressing it into a liquid or supercritical fluid. Carbon dioxide below the critical point liquifies at around 60 atmospheres, not a very high pressure. It’s actually very easy to make supercritical carbon dioxide, as the critical point is only around 30 C.

This fluid is then injected into a deep aquifer to get it away from the atmosphere. By the time it gets into that aquifer, it will be warm enough to be supercritical even if it was not at the surface. The supercritical fluid is lighter than water, so it rises, and the caprock will have to hold it in place if the sequestration effort is to work.

The following website and figure from Shell may help make more sense of this process. Click here for information on carbon capture and storage and here for an explanatory figure.

When we started the experiments, we were concerned that the carbon dioxide would suck water right out of the clay and cause the caprock to shrink and crack. Remarkably, the opposite was what we mostly observed. If anything, carbon dioxide entered the clay and swelled it. This is mostly good news: although swelling could also destabilize the caprock, a modest amount of swelling will actually close cracks and make the caprock better at holding in the carbon dioxide.

The best advice I could give to young scientists is to ask questions. Ask all kinds of questions and just talk to people. Get specific about what you can expect from a career in academia, in environmental consulting, in mining, in geotechnical, in whatever industry. Make friends and be a friend. Tell people about the things that light you up and also the things that make you sad or afraid, and be a welcoming person when other people respond in kind. This was immensely hard for me when I was in college: I was definitely a loner and pretty depressed most of the time. I had to learn eventually that I had to talk to people whether I felt up to it or not.

At the same time, be gentle on yourself. You’ve got plenty to offer the world, whatever your problems or family issues or your relationship status.