Whitney Lapic, Paleoecologist

Fig 1. This was from August 2019. I was on a research vessel off the coast of Florida, helping the EAT team collect specimens.

Some background information for you all– I am a second year Master’s student at Miami University in Oxford, Ohio. I would consider myself an aspiring paleoecologist and paleobiologist. And my interests lie in paleoecology, specifically predator – prey interactions, as well as science communication.

We know that predation plays a role in influencing modern ecosystems and so my research explores the impact that predation had on shaping ecosystems through geologic time. I am specifically looking at echinoids and how sea urchins and sand dollars evolved after new groups of predators emerged during the Mesozoic Marine Revolution (MMR). This time in Earth’s history is known for rapid diversification and emergence of new groups of marine life – many of which can be found in our oceans today. With all of these new or bigger and better predators in the oceans, prey, such as sea urchins, need to develop ways that they can deter predators from successfully attacking and preying on them.

The project that I am working on is part of the Echinoid Associated Traces Project (EAT) which addresses a wide range of paleoecological questions using biotic interactions and echinoids. My project investigates whether or not trends that can be seen in mollusks and their predators during the MMR can be seen in other groups of organisms. Recent studies suggest that the MMR was not this singular, homogenous event that it has previously thought to have been and so, we are looking at the timing of these potential escalatory trends in echinoids relative to other groups of organisms in which these trends have been so thoroughly demonstrated.

Fig 2. This is Encope, a live sand dollar that was collected off the coast of Florida.
Fig 3. In fall of 2019, I travelled to Moscow, Russia for the European Conference on Echinoderms. I attended a field trip and had the opportunity to look for sea urchin fossils.

When you think of sea urchins, you might think of long, sharp spines covering the entire organism, but that isn’t always the case. To determine if sea urchins developed traits to deter predators, we first need to find out what helps them avoid becoming prey. Over the past year, I have been identifying characteristics that we propose serve some form of antipredatory function. These morphologies include long and wide spines as well as spines that have unique shapes or sharp thorns covering them. These morphologies can actively deter predators by inflicting damage or they can promote the settlement of encrusting organisms that may provide camouflage. With the help of our undergraduate interns, I have been collecting data on these antipredatory morphologies across groups of echinoids.

Collecting data from so many specimens is no easy feat during a global pandemic. Thankfully, recent years have given rise to online databases and collections such as IDigBio. While it is no replacement for traveling to a museum to search for specimens, using images downloaded from IDigBio, our interns and I can still view hundreds of specimens from museums around the world. Through these virtual collections, we can digitally measure and categorize specimens and their antipredatory morphologies.

As an undergraduate student, I was unaware of some of these resources that were available to me, and so I feel as if they are perhaps unknown to undergraduate students who may be unable to work hands on with museum specimens for any number of reasons. With the current pandemic, the need for digital collections and databases is that much clearer. I am incredibly lucky that I am still able to continue my research and that my project may provide internship opportunities for the undergraduates involved, and much of that is due to the digitalization of museum collections.

Fig 4. Goniocidaris tenuispina (USNM E0001335), a sea urchin with highly ornate and long spines. This specific specimen is one of hundreds observed from collections that have been digitalized and made available through IDigBio. This image is from the Smithsonian and is from the NMNH Extant Specimen Records. There is a Creative Commons license (CC0) associated with it, so it is not subject to copyright.

Homeschooling and Science

Rose here-

I am a geologist and data engineer, and I was homeschooled. When I was growing up, homeschooling was not very common and most of the few resources available were focused on conservative/religious families. We had a handful of other homeschool friends over the years but most went to public school. While homeschooling may not be for everyone, it is great to see that it is so much more accepted now. Recent statistics show that 3-4% of K-12 students in the US are homeschooled, although that number may be higher at the moment due to the Covid pandemic.

When I first started taking science classes in college, I was a bit nervous because I had had no formal science and especially lab classes while being homeschooled. However, I feel that homeschooling did prepare me for college by requiring me to be self-motivated and good at finding information on my own. Another advantage of homeschooling is flexibility. For example, if an activity or lesson doesn’t take very long, you don’t have to wait for the class to be finished while twiddling your thumbs, you can move on to the next thing and finish everything more efficiently. On the other hand, if a concept is taking longer to learn, you can take all the time needed until you get it down. This taught me time management and persistence.

Another cool thing about homeschooling is the flexibility to develop your own curriculum. Some students work best from textbooks and with lots of structure, others do best with non-structured activities or schedules that change often. The advantage here is it’s all up to you so you can experiment until you find what works best for you.

Since a lot more of you are homeschooling right now, either long-term or just short-term during the pandemic, I’ve put together some ideas for teaching/learning science at home.

  • Your local public library is a treasure trove of resources for whatever you need. Any subject you want, you can find books or videos to check out. If you need help, the librarians always love to help you find the perfect resource to fit your needs. One common way my family approached science at home was to pick a subject and find a good book or video series to take us through it (chemistry, biology, astronomy). We’d watch or read and then discuss together.
  • Another favorite activity was using nature field guides to ID things we saw outside. We had a collection of field guides for things like birds, mushrooms, and native plants and loved looking up a bird we saw at the feeder or a leave we found on a walk. Whether on walks in the neighborhood or park or just in the backyard, take pictures or sketches of cool leaves, birds, critters, etc and then look them up when you get home. The guide will have basic info but once you figure out what you saw you can dig deeper online or in an encyclopedia to learn more if you’re interested. [Editor’s note: Look into apps like iNaturalist, Seek, and eBird for on the go identifications and to contribute to community science efforts!]
  • While not too many are open yet, museums and public gardens are great places to explore and spend some time learning while having fun. Often public libraries will have discount or free passes available for local places like these, so look into those (many may not be available during pandemic restrictions though). Even if they’re not open, many museums are posting activities for families to do at home right now, so check out some websites and see what you can find.

There are also lots of good science-based shows that you can find streaming online. Some favorites for younger kids are Emily’s Wonder Lab and Octonauts.

The relationship between rodents and Homo floresiensis

Temporal shifts in the distribution of murine rodent body size classes at Liang Bua (Flores, Indonesia) reveal new insights into the paleoecology of Homo floresiensis and associated fauna

by: E. Grace Veatch, Matthew W. Tocheri, Thomas Sutikna, Kate McGrath, E. Wahyu Saptomo, Jatmiko, and Kristofer M. Helgen.

Summarized by: Kailey McCain

What data were used? Researchers once believed that Homo sapiens (i.e., modern humans) were the only hominid to reach the Indonesian islands. However, in the past few decades anthropologists, archeologists, and paleontologists have discovered an early hominid species’ cultural and skeletal remains, belonging to Homo floresiensis, on the island of Flores. Along with the hominid remains, 257,000 additional vertebrate skeletal elements were identified and 80% of the collected belonged to the murine rodent taxa (i.e., rats). The main rodent genera identified and used in this study varied in body size, which was used as a proxy (i.e., representative) to identify the paleoecology of the environment. The five genera used were: Papagomys, Spelaeomys, Hooijeromys, Komodomys, Paulamys, and Rattus (Figure 1).

Methods: The excavation site for the murine skeletal remains, as well as H. floresiensis, was within the Liang Bua, a limestone cave on Flores Island. The stratigraphy of Liang Bua was divided into sectors based on age, with the oldest being approximately 190-120 ka (thousand years ago) and the youngest sector at less than 3 ka. Once the sites were identified, researchers began excavating the remains by using a method called wet-sieving, which is the process of sediment separation using water to remove certain grain sizes and break apart agglomerates (i.e., a mass of sediment grains).

Once the murine remains were collected, researchers began identifying the different species by using molar and jaw sizes, as well as comparing the skeletal body to size to extant (i.e., living) rodents. In addition to dividing the remains into their different species, they were also further divided by size. The five distinct body size categories are: small (<100 g), medium (100-300 g), large (300-600 g), huge (600-1100 g), and giant (>1100 g).

Figure 1: This image represents how the different murine taxa, Papagomys, Spelaeomys, Hooijeromys, Komodomys, Paulamys, and Rattus, differ in body size and molar size.

Results: The data collected showed that the small and medium sized murines dominated the cave during the first two sectors (190-60 ka) but researchers noted a sharp decline in the medium sized murines during the 60-50 ka age range. This decrease in species can be correlated to the paleoclimate record, which indicated a substantial decrease in available vegetation. As time progressed to the age range 47-12 ka, researchers noticed no significant change in body size. This was a surprise to the researchers due to the geologic record indicating high levels of volcanic activity. The next range, 12-5 ka, exhibited a decrease in overall murine size that can be attributed to the high rainfall and monsoon season recorded for this time period. Finally, the age range 5-3 ka, showed the first increase of medium sized murines which could be correlated to the dispersal of Homo floresiensis and the subsequent opening of habitats, but will need further research to support the claim.

Why is this study important? This study is important because it shows the relationship between the dominant non-human animals and Homo floresiensis within the Liang Bua cave. Additionally, the researchers explored other ecological factors (e.g, weather, resource availability, volcanic activity) and showed how it affects not only the fauna in general, but showed the difference in responses between sizes.

Figure 2: This figure shows two images. Image (a.) shows researchers measuring a large modern cave rat, Papagomys armandvillei. Image (b.) shows a reconstructed image of H. floresiensis carrying a large rat over their shoulder.

The big picture: The researchers set out to determine the ways in which the dominant fauna, second to the hominid species, responded throughout time with the introduction and dispersal Homo floresiensis. While there was a relationship noted between murine size/distribution and hominid involvement, the data also suggested that additional ecological factors may have contributed; therefore, no significant conclusions can be made without additional research regarding the true impact of Homo floresiensis

Citation: Veatch, E. G., Tocheri, M. W., Sutikna, T., McGrath, K., Saptomo, E. W., & Helgen, K. M. (2019). Temporal shifts in the distribution of murine rodent body size classes at Liang Bua (Flores, Indonesia) reveal new insights into the paleoecology of Homo floresiensis and associated fauna. Journal of human evolution130, 45-60. https://doi.org/10.1016/j.jhevol.2019.02.002

Victoria Crystal, Geologist, Paleontologist, Podcaster

Victoria collecting fossils in the field

Growing up in Denver, Colorado, Victoria developed a passion for paleontology by frequently exploring the Denver Museum of Nature & Science. She later got her bachelor’s degree in geology from Colorado College and her master’s degree in geology and paleontology from the University of Colorado Boulder.

Victoria’s research focuses on understanding ancient ecosystems from the Late Cretaceous period (the time of the dinosaurs) and the early Paleocene (the time just after the extinction of the dinosaurs). She uses two different approaches to do so:

 1- Geochemistry – She measures the carbon and oxygen isotopes in fossil dinosaur teeth to learn about what the dinosaurs were eating and drinking. Tooth enamel is made up of several different elements, including oxygen and carbon. When the tooth enamel is made inside the body, the oxygen ingested by an organism from its drinking water is incorporated into the chemical structure of the enamel. And the carbon in the tooth enamel comes from the food the organism eats.  In this case, Victoria is looking at the teeth of herbivorous dinosaurs, so the food is plants. Victoria is interested in where the dinosaurs are getting their water and food. She asks questions like, “are dinosaurs drinking water from large rivers that flow down from mountains? Or are they drinking water from ponds and streams on the floodplain? And are the plants they are eating close to the banks of these water sources or are they farther away?”  

Victoria using a rock saw to collect fossils out of very hard sandstone

2 – Paleobotany – She also measures the size and shape of fossil leaves to determine what the average temperature was when the leaves were alive and how much it rained at that time. This helps her to determine what the climate was like in the past. She is also curious about how plant communities recovered after the mass extinction at the end of the Cretaceous. This is the extinction that famously killed the dinosaurs, but also about 60% of plant species in North America went extinct too. So when she looks at the size and shape of fossil leaves to learn about the climate of the past, she also analyzes how many different types of leaves there were. This helps her to answer questions like, “how soon after the extinction did plant communities start to increase in diversity (meaning number of plant types)? How soon after the extinction did we start to see forests and rainforests in North America?” 

Along with geology and paleontology, Victoria is also passionate about education and STEM outreach. She is a certified Environmental Educator and has spent summers teaching science and leadership at the Keystone Science School and the Logan School for Creative Learning in Colorado.  She is also the host of the podcast Ask a Scientist, in which she interviews scientists asking them questions written by elementary and middle school students. She encourages everyone, including aspiring scientists, to be curious about the world around them and to always ask questions.

Victoria using a dremel drill to sample dinosaur tooth enamel
Podcasting!

Looking at past phosphorus accumulation in a Florida lake offers new insight on recent cultural nutrient enrichment

A Holocene Sediment Record of Phosphorus Accumulation in Shallow Lake Harris, Florida (USA) Offers New Perspectives on Recent Cultural Eutrophication

by: William F. Kenney, Mark Brenner, Jason H. Curtis, T. Elliott Arnold, Claire L. Schelske

Summarized by: Mckenna Dyjak

What data were used?: A 5.9 m sediment core was taken in Lake Harris, Florida using a piston corer (a technique used to take sediment samples, similar to how an apple is cored). Lake Harris is a subtropical, shallow, eutrophic body of water (rich with nutrients) located near Orlando, Florida.  

Methods: The 1.2 m sediment core is long enough to provide the complete environmental history of Lake Harris. However, the core must be interpreted first. In order to do so, the core was first dated using lead isotope 210Pb and carbon isotope 14C. The next steps involved using proxy data (preserved physical characteristics of the environment) to determine net primary productivity (the concentration and accumulation rates of organic matter), lake phosphorus enrichment (three forms of phosphorus), groundwater input (concentration and accumulation rates of carbonate material, like limestone), macrophyte abundance (e.g., sponge spicules), and phytoplankton abundance (e.g.,diatoms).

Results: The study found that Lake Harris began to fill with water in the early Holocene (~10,680 calendar years before the present) and transitioned to a wetter climate in the middle Holocene. The transition is indicated by a change in carbonate to organic sediments; a higher amount of organic sediments would suggest an increase in rainfall needed to support the plant life that would become the organic matter. A low sedimentation rate indicates that the lake was experiencing oligotrophication (depletion in nutrients) through the Holocene until around the 1900s. After the 1900s, there were increased sedimentation rates (Figure 1. A, B, D, and E) which indicates cultural eutrophication (increase of nutrients in bodies of water). Phosphates and nitrates from common fertilizers and other human activities (which is why it’s called “cultural eutrophication”) can allow algae (e.g., diatoms) to grow rapidly and reduce the amount of oxygen in the lake. An increased sedimentation rate can be used to determine whether a body of water is in a state of eutrophication, because the amount of phytoplankton (such as diatoms) would increase in accumulation. Total phosphorus accumulation rates can also indicate eutrophication.

Figure 1. Sedimentation rates for (A) bulk sediment, (B) organic matter, (C) CaCO3, (D) total phosphorus, (E) diatom biogenic silica and (F) sponge spicule biogenic silica versus core depth. Near the top of the core we can see a significant increase in A, B, D, E, and F which provide evidence for cultural eutrophication (increased sediment rates).

Why is this study important?: This study shows that, without being disturbed, Lake Harris was prone to becoming depleted in nutrients, the process of oligotrophication. The complete change of course due to human activities (i.e., fertilizer runoff) is more detrimental than was previously considered. This study showed that throughout the environmental history of Lake Harris there was never a sign of natural eutrophication, but rather that of oligotrophication. 

The bigger picture: Cultural eutrophication is a serious problem plaguing many aquatic systems and has serious consequences such as toxic algae blooms, which can have far reaching effects like on the tourism industry in Florida! The extent of damage caused by human activities is shown in this study and can help us understand how lakes responded in the past to the introduction of cultural eutrophication.  

Citation: Kenney WF, Brenner M, Curtis JH, Arnold TE, Schelske CL (2016) A Holocene Sediment Record of Phosphorus Accumulation in Shallow Lake Harris, Florida (USA) Offers New Perspectives on Recent Cultural Eutrophication. PLoS ONE 11(1): e0147331. https://doi.org/10.1371/journal.pone.0147331

Understanding how climate change affects predator-prey relationships in snails and clams

Climate-mediated changes in predator-prey interactions in the fossil record: a case study using shell-drilling gastropods from the Pleistocene Japan Sea

Tomoki Chiba and Shinichi Sato

Summarized by Baron Hoffmeister

What data were used? This study used a predator-prey analysis of drill holes found on fossil bivalve (clam) shells produced by gastropods (snails) found in the Oga Peninsula off the coast of Japan.

Methods: This study used computer analysis on fossil assemblages of bivalves to determine the location of predatory drill holes and the species of bivalves which indicated whether they are warm water dominant or cold water dominant species. The location of the drill holes on the bivalve shells was also analyzed to determine different predatory gastropods (Figure 1).

Figure 1. These are photographs of two predatory drill holes taken from a microscope. Section A-C is a predatory drill hole located on the center of the shell, and section D-F is a drill hole located on the shell edge. These two different types of predation patterns indicate two separate predatory gastropod species. Image from Chiba and Sato (2016).

Results: This study showed that drilling predation was influenced by the change of sea surface temperatures and sea level due to glacial-interglacial climate cycles. A glacial period occurs due to cool temperatures and glacial advancement, and an interglacial period occurs when glaciers retreat and sea level rises due to warming temperatures. As warm water currents decrease, so does the presence of warm-water predator gastropods. This causes them to shift their range, therefore changing rates of predator and prey interactions. In this study, predation slowed as seawater temperatures decreased and in turn found that this moderated the predation pressure between the gastropods and bivalve prey. This study also found that predator and prey interactions in a shallow-marine ecosystem are likely to weaken with cooling temperatures and strengthen with warming temperatures.

Why is this study important? This study indicates that predator-prey relationships can be used to help interpret changing climates and the implications it has on ecosystems. This study also notes that ocean climate variability has large implications of range shifts which can be used to interpret how organisms respond to changing climate conditions.

The big picture: The information found in this study can be used to help interpret current-day climate change and its influence on predator-prey relationships in relation to the biogeographical distribution of species due to ocean temperatures. This is useful for identifying ecosystems globally.

Citation:

Chiba, T., and Sato, S. I.. (2016). Climate-mediated changes in predator-prey interactions in the fossil record: a case study using shell-drilling gastropods from the Pleistocene Japan Sea. Paleobiology 42(2), 257–268. doi: 10.1017/pab.2015.38

Niklas Hohmann, Master student in Paleobiology

What is your favorite part about being a scientist and how did you get interested in science in general? The best part are the findings that completely contradict your intuition! Discussing these findings with other scientist and finding out where and why the intuitions failed are the moments where I learn most. I always loved these learning moments that spark curiosity, so aiming for a career in science was a natural thing to do.

In laymen’s terms, what do you do?  I study how parts of dead animals such as mussel shells are turned into fossils. This sub-discipline of paleontology is called “taphonomy”, which is Greek and roughly translates as “the science of burial”. The focus of my research to find out how much information about past environments is lost when fossils form. Some shells might for example be very fragile, so finding few fossils of them is not necessarily evidence that they did not play an important role in the past ecosystem.

How does your research contribute to the understanding of climate change, evolution, paleontology, or to the betterment of society in general? Before 1950, very little information about ecosystems was collected. This makes it difficult to assess the impact humans had on nature simply we do not really know how nature looked like 500 or 1000 years ago. By developing tools to reconstruct these ecosystems from fossils, I hope to contribute to the understanding how nature looked like in the past so we can better protect it for future generations.

What are your data and how do you obtain your data? All data I use was previously published by someone else and I compile it from the literature for specific questions I am working on. Typically this would be information about shells that were found in a drillcore, their material properties that were determined in a lab experiment, and the environmental conditions where the core was taken.

Aside this empirical data, I borrow concepts from chemistry, physics, and different branches of mathematics for modeling. This can lead to interesting analogies: The way shells are distributed in the sediment is similar to the way heat is migrates through a solid medium, which is in turn tightly connected to particle movement.

The effect of sediment input on shell abundance in the sea floor. When sediment input is low, many old shells will be found at the sediment surface. Typically the ages of shells found at the same place differ by hundreds of years, a phenomenon called time-averaging. When sediment input is high, shells are buried quickly, which protects them from destructive processes close to the surface.

How has your research have you been affected by the COVID-19 pandemic? A lot of scientists that depend on access to labs were having troubles getting their work done due to the social distancing measures. Also many of the side jobs that are crucial for students were not available anymore, which put a lot of financial pressure on them.

My research has not been affected much, but all the conspiracy theories surrounding COVID-19 have strengthened my belief that science communication should be a central part of scientific practice.

What advice would you give to aspiring scientists? If you’re already in academia: Don’t specialize too early and look for a mentor you get along with. In general: stay curious and ask all the questions. Especially the ones you think are stupid.

Mima-like Mounds of South-Central United States: A Remnant of Late Holocene Droughts?

Relict nebkhas (pimple mounds) record prolonged late Holocene drought in the forested region of south-central United States

Christopher L. Seifert, Randel Tom Cox, Steven L. Forman, Tom L. Foti, Thad A. Wasklewicz, and Andrew T. McColgan

Summarized by Isaac Pope

Introduction: Even before their first geologic description in the nineteenth century, the Mima Mounds of the Puget Lowland have captivated the human mind. The elliptical dome shapes of the millions of regularly spaced mounds have defied explanation (figure 1), yet these mounds appear to be a globe phenomenon. Across prairies on North America and other continents, mounds resembling the Puget Lowland Mima Mounds (termed “Mima-like mounds”) have incited geologists to propose a host of forces from earthquakes to flooding rivers and even rodents as explanations for these enigmatic mounds (Johnson and Burnham, 2012; Tucker, 2015). Because of the diverse settings in which these mounds are found, some researchers have suggested a single cause of all Mima-like mounds is unlikely, opining that instead a variety of forces may have been the cause. Amid this debate, six scientists have proposed that the Mima-like mounds of south-central United States are the remnants of a geologically recent drought.

The Data: Locally known as pimple mounds, the Mima-like mounds of south-central United States are found on flat benches near rivers and streams across Arkansas, Oklahoma, and nearby states. While some may be currently or historically forested, most mounded areas appear to have originally been prairies or open areas within forests. The mounds are underlain by bedrock or a subsoil pan relatively impervious to water seepage, which may be one reason for the general lack of forests in mounded areas.

The Methods: The research team cored three prairies in Arkansas and Oklahoma to analyze the grain size and potential age of the mound material, collecting six cores of each sampled mound and one core in the low area adjacent to the mound. Four of the mound cores were collected on the North, South, East, and West axes of the mound and a fifth was taken in the center. Taken in a specialized metal pipe, the sixth was collected near the central core for luminescence dating, a method of dating the extent of time since a silicate mineral such as quartz has been buried by observing its reaction with light. Some of the mounds in one of the prairies were also measured using laser-scanner surveying technology to evaluate the asymmetry of the mounds.

Figure 1. The Mima Mounds of the Puget Lowland (Washington) have baffled geologic interpretation for over a century. Numbering in the millions, these dome-like mounds can be found on a number of prairies in the Puget Lowland, while other similar mounds (Mima-like mounds) have been identified across the world. Notice the trees and trail for scale. Photo by the author at Mima Prairie Natural Area Preserve.

The Results: Often steepest on their northwestern slope, the mounds were found to be composed primarily of silt and sand, being coarsest towards the northwest. Luminescence dating indicated that the mound sediment had been deposited within the past several thousand years during the Holocene with age increasing with depth.

Implications: The asymmetry of mounds both in their shape and composition suggest that they are nebkhas or coppice dunes, which commonly form in sub-arid areas as shrubs capture sand and silt in windy conditions. The origin of these Mima-like mounds as relict nebkhas supports extended droughts in south-central United States through middle and late Holocene, which was dominated by winds trending towards east or southeast.

A Broader Perspective: The identification of these Mima-like mounds (“pimple mounds”) as nebkhas provides insight not only into the local paleoclimate but also the potential origin of some Mima-like mounds. The mounds of south-central United States are one of the only local datasets spanning the middle and late Holocene, thereby recording information on the duration and extent of past droughts in the region. It is also possible that other Mima-like mounds, such as the classic mounds of the Puget Lowland, are also nebkhas, although more recent research indicates that a wind-based model for mound formation in the Puget Lowland is unlikely due to the extensive cobbles and boulders among the mounds (Pope et al., 2020). Further study of the nebkhas of south-central United States may continue to reveal information for solving one of the most baffling mysteries of geology

Citation: Seifert, C.L., Cox, R.T, Forman, S.L., Foti, T.L., Wasklewicz, T.A., and McColgan, A.T., 2009, Relict nebkhas (pimple mounds) record prolonged late Holocene drought in the forested region of south-central United States: Quaternary Research, vol. 71, p. 329-339, doi: 10.1016/j.yqres.2009.01.006.

References:

Johnson, D.L. and Burnham, J.L.H., 2012, Introduction: Overview of concepts, definitions, and principles of soil mound studies, in Burnham, J.L.H. and Johnson, D.L., eds., Mima Mounds: The Case for Polygenesis and Bioturbation: Geological Society of America Special Paper 490, p. 1–19.

Pope, I.E., Pringle, P.T., and Harris, M., 2020a, Investigating the Late-Glacial Tanwax Flood—A Lithologic Study of Sediments in Selected Mounded Terraces in the Puget Lowland: Geological Society of America Abstracts with Programs. Vol 52, No. 6, doi: 10.1130/abs/2020AM-358073.

Pope, I.E., Pringle, P.T., and Harris, M., 2020b, The Tanwax Flood at Mima Prairie: Preliminary Results Supporting a Debris Flow Origin of the Mima Mound Sediment: Centralia College Eighth Annual Capstone Presentation Day.

Tabbutt, K. 2016, Morphology and spatial character of the Mima Mounds, Thurston County, Washington: Northwest Scientific Association, 87th Annual Meeting, p. 91.

Tucker, D., 2015, Geology Underfoot in Western Washington: Missoula, MT, Mountain Press Publishing Company, 333 p.

Isaac Magallanes, UChicago Ph.D. Graduate Student

Photo taken at Ghost Ranch, New Mexico in the summer of 2018. I was helping with the GABI RET 2018: The North American Connection.

What is your favorite part about being a scientist and how did you get interested in science in general? As a scientist, I enjoy traveling and meeting/learning from people with a diversity of research interests. When I was a kid, I was always curious and interested in the world around me. I would watch PBS shows like NOVA and Nature with my dad. It didn’t matter to me whether I was learning about giant baleen whales or tiny African ant colonies, I enjoyed it all.  Although I was never able to visit a museum or attend a science camp during my childhood, the time spent with my family watching these programs laid the foundation for what would eventually become my passion and career path as an adult.

Although my parents fostered my interest in science, I never saw myself becoming a scientist. I believed I would grow up and do manual labor like my father. As a kid I would often assist my dad with an odd job or install carpet with my brother in law on the weekends. I did not see myself going to college, much less applying for graduate school.

Had it not been for the encouragement from my parents and high school English teachers, I would not have attended Cal State Fullerton as an undergraduate. Although I began my academic journey as an English major, I found myself becoming more interested in science. During this time, I enrolled in Geology 101 to fulfill a gen ed requirement and met my undergraduate advisor Dr. James Parham. He presented the course material in an accessible manner by using local examples when discussing geology and paleontology.

This class became the spark I needed to change my major and embark on the academic journey I am on today. He has and continues to be a great mentor and friend.

Photo taken in Washington Park near the University of Chicago.

In laymen’s terms, what do you do?   To be concise, I study ancient vertebrate organisms and the processes that shape their morphology (shape). The term morphology can refer to many different things but I when use it I mean the shape of bones. Throughout my journey this has taken many forms.

As an undergrad, I described a new species of extinct fossil walrus from Southern California. My research also summarized the diversity and geographic distribution of fossil walruses as a group during the last ~18 million years.

As a masters student at the University of Florida, my research focused on studying paleoecology and reconstructing the dietary preferences of extinct mammal herbivores (horses, camels, rhinos, and elephant ancestors) from North Central New Mexico that lived ~16.9-6.7 million years ago.

What are your data and how do you obtain your data? In other words, is there a certain proxy you work with, a specific fossil group, preexisting datasets, etc.? It largely depends on the project, but I primarily rely on museum collections. In some cases, I have collected fossils for my own research through field work, but often I hop on to other student’s field expeditions to lend a helping hand. Camping and hiking are some of the many perks of being a paleontologist that I enjoy.

What methods do you use to engage your community/audiences? What have you found to be the best way to communicate science? In addition to conducting research, I also enjoy participating in scientific outreach. As a student, I have visited K-12 classrooms as a science expert, helped develop lesson plans with teachers, and participated in many pop-up museum events. This is due in large part because my master’s advisor and mentor, Dr. Bruce MacFadden, actively encouraged me to always think about the broader impacts of science.

Recently, I have been working with the “Cosplay for Science” team (of which I am a founding member) in developing unique pop-up museum experiences that bridge the gap between science and pop-culture. My favorite part about being involved with “Cosplay for Science” is getting to attend comic-cons and discuss how science inspires our favorite comic-books, movies, books, video-games, and TV shows. Be sure to check out our Instagram (@cosplayforscience) and follow us for more info on cool pop-ups and interesting content from our contributors!

What advice would you give to aspiring scientists? I would say to not be hesitant in seeking new opportunities and experiences. When I began doing research at Cal State Fullerton, I felt like I was entering a whole new world. At first it was overwhelming, but I soon realized that I was not alone and found a strong support group in my lab mates and advisor. These relationships have continued through the years and served as great resource. Science is very fun, but it can also be hard, having the right team around you can help make the journey more enjoyable and fulfilling!

Follow Isaac’s updates on Twitter and Instagram!

Behind the Storm: How Climate Change Affects Women’s Empowerment in Africa and Asia

A Qualitative Comparative Analysis of Women’s Agency and Adaptive Capacity in Climate Change Hotspots in Asia and Africa

by: Nitya Rao, Arabinda Mishra, Anjal Prakash, Chandni Singh, Ayesha Qaisrani, Prathigna Poonacha, Katharine Vincent, and Claire Bedelian

Summarized by: Lisette Melendez

What data were used? This study focused on the lives of 25 women from geographically different areas in Africa and Asia, including deserts, mountains, and deltas. Even though their cultures and livelihoods differed, they were connected by one phenomenon: climate change. Climate change is something that affects humanity as a whole, but the most severe impact will be felt by our vulnerable communities. As summers grow hotter and droughts increase, those whose livelihoods depend on natural resources will face extreme adversity in the coming years.

Figure 1: A map of all the areas that were surveyed in this study.

Methods: The focal point of the study was to investigate how a woman’s agency – or ability to make meaningful and strategic decisions – was impacted by her surroundings. During field research, each woman was interviewed and their livelihood, exposure to environmental risks (like cyclones, flooding, and storm surges), and societal standing were charted. Then, conditions like material possessions, supportive legal systems, and environmental stress were analyzed in each situation to measure the impact each had on the given woman’s life.

Results: With climate change leading to inconsistent rain and extreme temperatures, land becomes infertile and inadequate for farming. Men often migrate away in search of better job opportunities, and while this presents as a source of empowerment for women, with the chance of increasing their involvement in managing money, the research shows it was actually a burden. One young woman noted, ‘Men can easily migrate for work whereas we have to stay here (at home) to take care of the family’. The women were often left alone to provide food for their children and maintain the crops and pay the bills. Even in states with relief programs for floods and droughts, women were often excluded from receiving aid – reinforcing cultural norms that disadvantage women globally. The same trend can be seen in the United States right at this very moment, with up to 90% of women and minority business owners being excluded from the Paycheck Protection Program.

Environmental stress overshadowed the benefits women received from becoming a greater part in household decisions and in the workforce. Why? Because climate change has destructive consequences for the environment in which these women base their lives on. The struggle to simply survive in barren fields forces women to work harder, in poorer conditions, and for lower wages.

Figure 2: The United Nations’ Sustainable Development Goals

Why is this study important? This study provides vital information for governments to implement effective social programs for their citizens. It advances conversations about gender equality on the international stage and urges leaders to commit to gender equality when drafting important documents like the United Nations’ Sustainable Development Goals and the Sendai Framework for Disaster Risk Reduction.  

 The big picture: The negative environmental impacts of human-driven climate change are now inevitable: global temperatures will continue to rise, droughts will become more prevalent, and storms will intensify. It is important, now more than ever, to ensure that countries have the necessary social programs that can effectively help people sustainably adapt to the changing environment. Resources and adaptation strategies must be made available to the communities that are most vulnerable to fluctuating circumstances. 

Citation: Rao, N., Mishra, A., Prakash, A. et al. A qualitative comparative analysis of women’s agency and adaptive capacity in climate change hotspots in Asia and Africa. Nat. Clim. Chang. 9, 964–971 (2019). https://doi.org/10.1038/s41558-019-0638-y