My Experience at the Wyoming Dinosaur Center

Ohav here–

Earlier in the spring, I got an email containing a flyer for an internship that grabbed my attention with a simple question: “Do you like dinosaurs and digging in the dirt?”. As an aspiring paleontologist, I thought, to no surprise, “I love both of those things!”, and I looked into the offer further. A few references and an interview later, I had managed to get a position! That May, I would be going to Thermopolis, Wyoming.

When I started my first day, I was surprised at how dense with information the museum was. I knew that being in a small town, the museum would be much smaller than its contemporaries. Even so, I was not prepared for the amount of stuff in that building! Still in awe of all the beautiful specimens in the main hall, the other interns and I began our orientation. There were a handful of programs and activities available which we would work together to lead, the following of which were the most common.

First, were the Museum Tours: the most basic of the activities, but by no means the least fun. It is exactly as it sounds: a tour of the museum. However, we interns were allowed and encouraged to put our own personal spins on them. This meant making our own scripts, deciding which exhibits to focus more on and which can be breezed through, cherry-picking the coolest fun facts to share with our groups, and even including pop culture references. For example, we would often describe the length of our Supersaurus, Jimbo, by using the metric of Jeff Goldblums. Since Jimbo is 120 feet long and Jeff Goldblum is 6’4’’, we estimated that Jimbo was about 19 Jeff Goldblums long. This went over particularly well with those familiar with his iconic role in Jurassic Park.

Second, were the Bus Tours. The Bus Tours were also simple: drive a van full of people up the mountains of the Morrison Formation to our most significant dig site, Something Interesting (SI), and give them a tour of the place. The tour, in short, was a look through a window to about 150 million years ago, and explored not only the dinosaurs found there, but also the geochemistry and even the seasonality of prehistoric Thermopolis.

Third, were the Shovel Readies, which involved taking group(s) up the mountain to one of our four active sites to dig for a few hours. These would occur either in the morning or the afternoon.

Fourth, and my favorite activity of all, was the Dig For a Day program, or DFD. DFDs were a combination of the previous activities plus an expedition to the Sundance Formation, which underlies the Morrison and yields marine fossils. A DFD day would start with an SI tour, followed by a few hours of digging at one of our sites, then lunch, then prospecting (looking for new fossil sites) at Sundance. Although most guests found dinosaurs more interesting than the marine invertebrates, the promise of being able to keep whatever invertebrate fossils they found sweetened the deal. Finally, after the Sundance, we would conclude the day with a museum tour, which included a sneak peek into our collections and prep lab.

Working with so many wonderful people, who themselves are amazing scientists, was an unforgettable experience. Living with them added to the overall experience too, as we all got to know each other quite well, making the group dynamics all the more interesting. Of course, this is expected from a group of people who love dinosaurs and other prehistoric life spending seven weeks together in the same house. More than anything, though, I loved being able to teach guests about the history of life. Because the museum exhibits were organized with a “tour through time” in mind, it was especially easy and fun to walk guests through the steps life took to get to where we are today. In addition to teaching, I was able to learn a lot. The other interns’ tours alone allowed me to gleam a significant amount of information and insight, since their versions always had things I didn’t know in them. Beyond the tours, I learned much from the museum staff who trained us, learning how to find pathologies and taphonomies in fossils from the head prep lab manager and how to find and map them in the field from the dig site manager. In the lab especially, I came to see some of the most interesting things which made me think more and more about the intricacies of dinosaur morphology and what pathologies that they may have developed.

My biggest take-away from my internship was being able to learn from so many people and being able to pass that knowledge on to others. I was extremely fortunate to work in such an amazing establishment and learn so much, as well as make so many good friends. Going up the mountains of the Morrison, nearly every day for seven weeks, was something I won’t forget. Walking where the dinosaurs walked and digging their remains, and being able to educate all the while, was a small taste of what I hope to do in the future. Now, I must say: if you ever find yourself on a road-trip to Yellowstone or otherwise find yourself in Wyoming, please take the time to stop by the Wyoming Dinosaur Museum in Thermopolis. This hidden gem has much to offer, and the town is charming too!

Happy National Fossil Day 2021!

National Fossil Day poster for 2021 by the National Park Service.

Today is International Fossil Day! 

International Fossil Day  is an initiative by the International Paleontological Association and the National Park Service (National Fossil Day in the U.S.), the idea is to spread the interest in the life of the past and many different organisations and museums around the world host events or activities today. Of course we, the Time Scavengers team, have to participate in this, there can never be too much paleo-related fun! 

We want to celebrate IFD by showing off our team members’ favourite extinct species or individual fossils, some facts about the species or individual and why we picked them as our favourites.

Click here to visit the National Park Service website to learn more about National Fossil Day, and here to visit the International Palaeontological Association to learn more about International Fossil Day!


A fossil cave bear skeleton. Image credit: Wikipedia.

Most of my paleontology lectures during my undergrad took place in small rooms somewhere deep in the side wings of the institute building, on the edge of the paleontological collection/museum that is located within the institute. Whenever me and my friends were waiting for our professors to show up, we would stare and marvel at the exhibited specimens. I vividly remember walking into that area for the first time, it is dominated by a huge, mounted skeleton of an adult cave bear (Ursus spelaeus) and I was completely blown away by the sheer power it radiates. I didn’t care too much about the T. rex skull cast around the corner that most others found so fascinating. From that first day of paleo classes, having my own mounted cave bear skeleton has been on the top of my bucket list. U. spelaeus lived during the Pleistocene across both northern Asia and Europe and went extinct during the Last Glacial Maximum about 24,000 years ago. They are closely related to brown bears (Ursus arctos), the two species have a last common ancestor about 1.2 million years ago. Even though they were huge, powerful bears that were reaching 3.5m (11.5ft) when standing upright, with large teeth and fearsome claws, it’s currently thought that the majority of the western populations were eating an almost exclusively vegetarian diet! Recently, two very well preserved frozen cave bear carcasses have been discovered in two separate areas of thawing permafrost in Russia, an adult and a cub, both with almost all soft tissue present and intact. I’m already excited and looking forward to reading all the new research that will be done on these specimens!


Cast of U. anceps skull. Image credit: Wikipedia.

I worked at the Field Museum of Natural History during the summer of 2015 and that experience was what solidified my interest in paleontology. I worked with my supervisor on Eocene mammals from the western United States and had some of my first experiences doing large scientific outreach events during that summer. Because of that summer I will always have a soft spot for Uintatheres!

Uintatheres (U. anceps) lived during the Eocene in North America and were large browsers. These animals looked similar to rhinos but male U. anceps had six knob-shaped protrusions coming off of their skulls. Part of my experience working with these fossils was reorganizing the collections space that housed the skulls, they are incredibly heavy! I mentioned that U. anceps were browsers, but they also had long canine teeth that resemble the canines of saber tooth cats. These teeth may have been used as a defense mechanism but also may have played a role in how they plucked leaves from plants. While I don’t work on Eocene mammals now, Uintatheres will always be special to me for the role they played in getting me excited about paleontology and scientific outreach!


Whitney next to Asteroceras stellare.

I cannot pick just one fossil to highlight right now, so here are two of my favorites! In 2016, I was studying in England and visited the Natural History Museum in London where I saw an incredible ammonite, Asteroceras stellare. Asteroceras was a large ammonite that lived during the Early Jurassic and whose shell reached nearly three feet in diameter. Asteroceras was a nektonic carnivore who might have fed on fish, crustaceans, and bivalves.

Whitney in front of an ichthyosaur!

My favorite vertebrate fossil is the Ichthyosaur. I loved visiting the Jurassic Coast in England and got to explore Lyme Regis, both the birthplace of Mary Anning and a town that had references to paleontology everywhere you looked. You can see ichthyosaur fossils in both the Lyme Regis Museum and the Natural History Museum in London and at the NHM, you can see some of the specimens that Mary Anning and her family had collected along the Jurassic Coast. Ichthyosaurs (Greek for “fish lizard”), are marine reptiles that lived during much of the Mesozoic and were thought to be one of the top aquatic predators of their time.


Mike in front of an American mastodon statue!

I have three favorite extinct species: the American mastodon (Mammut americanum), the dinosaur Parasaurolophus, and the chalicothere Moropus elatus. Mastodons are distant relatives of the elephants, and they seem to be overshadowed by the wooly mammoth. However, both lived in North America until the end of the Pleistocene epoch. I’ve always thought that Parasaurolophus was an elegant duck-billed dinosaur, and I’ve seen them featured in several movies in the Jurassic Park series. I think that chalicotheres are so bizarre! Distant relatives to horses, rhinos, and tapirs, imagine a big draft horse with giant claws instead of hooves! I’ve seen several skeletons of these over the years. Moropus elatus went extinct in the Miocene epoch.

Mike next to a Moropus elatus skeleton!
A statue of Parasaurolophus.


Like anyone in paleo would tell you I can’t pick one particular fossil organism as my favorite. Currently my favorite fossil organism is the “bear-dog” known as Amphicyon ingens which would have been a formidable predator during the Mid-Miocene. The cenozoic was a time for innovation in mammals and bear-dogs were the best of both worlds. All the stoic grandeur of a bear and all the cute charm of a dog, what more could you want? The picture shown was taken at the American Museum of Natural History in New York City.


Jonathan Jordan (Paleo Policy Podcast)

For me, the Mesozoic reigns supreme. However, my recent trip to the La Brea Tar Pits in Los Angeles gave me a greater appreciation for the Cenozoic era and mammalian evolution in general. While it may not be my favorite fossil ever, I was captivated by Panthera atrox’s look and the idea of an American Serengeti 340,000 to 11,000 years ago. Genetic analysis suggests with high likelihood that Panthera atrox is a close relative of the Eurasian Cave Lion (Panthera spelaea). After the Bering Strait land bridge was submerged by rising sea levels, Panthera atrox was isolated from its Eurasian relatives and became a distinct species that has been found as north as Alaska and as south as Mexico. Neat! Check out an image of Panthera atrox’s skull on the Smithsonian Learning Lab site!


I’m fortunate to have worked on many different types of animals during my career, starting with dinosaurs, then moving to Devonian brachiopods and their encrusting organisms, and now working on much younger Pleistocene-aged animals that are still alive today. I mostly study biotic interactions, such as predation, so I thought I would share my favourite trace fossil (ichnotaxon), Caedichnus! Trace fossils are different than a body fossil because they show evidence (or traces) of an organism or its behaviour. In the case of Caedichnus, this trace fossil is created by a crab trying to break into the shell of a snail by peeling away at the shell opening (aperture) until it can reach the snail’s soft body. Imagine having a crab try to peel your shell back like an orange – scary! Caedichnus traces are useful for determining how many crabs were in an area, and identifying patterns of crab predation through space and time. I’m now using them to determine the impacts of climate change and human activity on crab fisheries since pre-human times.


Like most of my colleagues above, it is incredibly hard for me to say which fossil is my favorite! So instead, I’ll talk about my favorite fossil group, the foraminifera. Foraminifera are single-celled protists that live in the surface ocean (planktic foraminifera) or in/on ocean sediments (benthic foraminifera). Planktic foraminifera are my favorites; they evolved about 175 million years ago, and still live in the global ocean today! One of the ways which we know about past climate states how the ocean behaved to such warming and cooling events of the geologic past is through analyzing the chemistry of fossil foraminifera shells, or tests! Foraminifera are also incredibly useful in studies of evolution, as they have a robust fossil record. Learn more about Foraminifera here!

Various planktic (surface-dwelling) foraminifera (marine plankton) species. Images are 60-100x.

What’s YOUR favourite extinct species? Let us know in the comments, maybe we will feature them in a future post!

Devra Hock, Paleontologist, Ph.D. Candidate

Tell us a little bit about yourself.
Hi! My name is Devra Hock and I am currently working on my PhD on mammalian paleoecology. Outside of my research, I love dance and musical theater. I’ve danced and performed my whole life and recently that interest has shifted towards aerial dance (think Cirque du Soleil, but much less fancy). I teach aerial hoop and pole fitness classes, as well as perform with my aerial studio in Lincoln, NE. Having something else to focus on with non-academic goals and challenges allows me time to have fun and accomplish personal goals. I also have a love of vintage-inspired fashion, and want to help re-define what scientists look like.

What kind of scientist are you and what do you do?
Right now, I am a PhD candidate at the University of Nebraska-Lincoln, which is very similar to a research scientist. I conduct my own research for my dissertation, as well as teach in my department and assist my advisor with his research. I’m studying mammalian paleo-ecology, and specifically looking at how the distribution of mammalian traits can be used to predict environments. To do that, I use historical mammalian distributions and their associated traits and environments as proxies to build a model that can be applied to the fossil data. Currently, I am comparing both North American and African mammal data to determine which is the best proxy to use for Miocene North American fossil localities. Another part of my research is examining the change in North American mammalian distributions from historical to modern times and discussing possible causes. In addition to my research, I am on the board of the Association for Women Geoscientists and currently transitioning from a region delegate to the Communications Coordinator after participating on the communications committee being in charge of the AWG Twitter and part of the team that keeps the website updated.

What is your favorite part about being a scientist, and how did you get interested in science?
I grew up loving going to museums and science centers, but that did not translate into an interest into science as a career field until middle school, with a 6th grade field trip focusing on earth sciences. That was my first exposure of geology as a scientific field. From there, the following year I researched what radiocarbon dating was for a research fair at school and used woolly mammoths as my example in that project. While working on that project, I found myself going down the paleontology documentary rabbit hole and got more and more interested in paleontology itself. In high school, I was lucky to have a science teacher that had a background as a paleo-anthropologist, and I was able to really develop my interest in paleontology throughout high school.

As a scientist, I appreciate the skill to look for questions that don’t have answers and to think critically about data and facts presented to me. I’ve also learned how to be collaborative with a variety of people from different disciplines. Additionally, one of my favorite parts about being a paleontologist is our ability to essentially time travel through our research. Especially when we’re out in the field, we’re standing in rocks that formed millions of years ago and finding fossils that haven’t seen the light of day since they were buried. As a geologist and paleontologist, we’re able to look at the rocks and interpret what environment created each rock layer, and travel through different environments as they changed through time. In my specific field of paleo-ecology, we try to understand what the interactions of animals and their environments looked like throughout time.

How does your work contribute to the betterment of society in general?
My research has two broad contributions to society. First, my research of historical versus modern mammalian distributions will add to our knowledge of the changes occurring in the natural world around us and what the potential causes might be. These discussions contribute to the work of ecologists and conservationists as they work to maintain our natural spaces for future generations. Second, my research into paleo-ecology will add to our knowledge of the evolution of environments and animals throughout time, which also contributes to our understanding of why and how environments change and what the animals’ response has been in the past.

My work with the Association of Women Geoscientists and local outreach events creates discussions about equity and equality in the geosciences for women and other underrepresented groups. Currently both with AWG and in my own department, I have been working with others to find sustainable and achievable methods to increase diversity and inclusivity in the geosciences and to dismantle systemic and institutional barriers.


What advice do you have for up and coming scientists?
My biggest piece of advice is to find a way to try out things you’re interested in to see if you really like doing them. I started doing field work in high school as a gauge if I really did like paleontology in practice and not just from TV documentaries. It’s also a great way of building experience and connections. My second biggest piece of advice follows that, which is networking. Just like any other field, your path is what you make of it, but knowing other people in your field can change the shape of your path. Don’t be hesitant to reach out to professors or researchers in the field that you’re interested in. With emails, the worst that can happen is they never respond! Science is filled with opportunities, but unfortunately opportunities aren’t always equal. You may have to seek out experiences that will help you later on. There are a lot of unspoken rules and expectations, and sometimes you won’t get opportunities you are qualified for, and that’s not your fault. You just have to keep pushing and your time will come. However, with everything I just said, don’t lose yourself to your science. We are all multi-faceted human beings with lots of different interests. Make sure to take time for yourself and your other hobbies. Time away from school or research is just as important as time spent working. While school and research are important parts in your life, they aren’t your entire life. Remember, you can’t do science if you’re burned out!

To learn more about Devra and her research, visit her website here!

Alex Klotz, Physicist

Photo by Sean DuFrene

I am a physics professor at California State University, Long Beach. My specialty is biophysics, which as the name suggests is at the interface of physics and biology, and I’m interested in using materials from the natural world to answer fundamental physics questions. Evolution has had billions of years of practice to engineer neat materials, while we have only been doing it for a few thousand. I spent a few years looking at knots in DNA to understand how entanglements between in and between molecules affect the mechanical properties of things made out of molecules. Now I study DNA structures called kinetoplasts, which are basically sheets of chainmail made of thousands of linked DNA loops. They look like tiny jellyfish and are found in the mitochondria of certain parasites. Among other things, I’m trying to use them to answer questions about the physics of 2D materials that are important for bringing materials like graphene (single-layer carbon) to actual technological use. Totally unrelated to my work with DNA, I also wrote a paper calculating how long it would take to fall through a tunnel through the center of the Earth (38 minutes), which was all over the news for a few days back in 2015.

I also dabble in outreach; I kept a blog about my various science thoughts and adventures for a few year and volunteer for programs like NetPals and Skype-a-Scientist. I’m hoping to start a similar program here in Long Beach. Right now the most outreachy thing I do is make dumb science jokes on twitter, which mainly reach other scientists.

My favorite part of being a scientist is figuring something out that nobody has figured out before, it is an amazing feeling. I remember the first “discovery” I made during my senior thesis in college and the few that I made over the next few years. Now I’m lucky enough that I get to discover new things a few times a year. I’m training several students in my lab and I hope they get to feel that as well.

A kinetoplast, which is a network of about 5000 linked DNA rings, is seen here under a microscope moving along with a flowing liquid. Its shape changes from a folded taco to a flat frisbee as it moves. Scale bar is 5 microns, about one-tenth the diameter of a human hair.

My main hobby the last few years has been road biking, which I like as a way to experience the outdoors, meet people while not having to talk non-stop, and stay fit and active. It was a pretty good hobby to have during the pandemic when there was nothing else to do. I used to play ultimate frisbee, but I’ve been injured for a few years. I like animals although I don’t currently have any pets. Another pandemic hobby I picked up was walking around the neighborhood every morning and meeting all the outdoor cats. I just moved a month ago so I have to meet all the new cats.

I won’t say too much about the path I took and how you should follow it, because it involves a good deal of privilege and luck. My advice to graduate students is to attend as many seminars as you can, not just in your own sub-sub-sub-field of research. You learn a lot about your discipline that will come in handy later, you can make good contacts, and you can get ideas that you may be able to apply to your work.

Rachel Roday, Graduate Student and Marine Scientist

Rachel transporting a sedated sandbar shark to a respirometer to understand shark metabolism.

My favorite activities are ones that help me connect to nature, such as SCUBA diving, kayaking, and painting landscapes. Even as a child, I spent all of my free time at the beach or obsessing over turtles, so it was no surprise when I decided to pursue marine science as a profession. I obtained my Bachelors of Science in marine science and biological sciences from the University of Delaware where I conducted research on shark respiration and zooplankton behavior. I also completed an internship at Mote Marine Laboratories in Sarasota, Florida examining red tide toxins from Florida beaches.

Currently, I am a graduate student at the University of Texas at Austin Marine Science Institute. Though I have yet to begin my thesis, my research will focus on understanding the role of per- and polyfluoroalkyl substances (PFAS) in marine fishes. PFAS are a group of approximately 4500 manmade chemicals that are water, heat, and oil resistant. They have been found in non-stick pans, fire-fighting foams, stain resistant carpets, and many other common use items and are known carcinogens in humans. Little is known about the impact of these chemicals on marine fishes, so I hope to fill some of this knowledge gap by determining the toxicity of lesser known PFAS compounds and how they might be transferred from parent to offspring. As a scientist, I aim to understand the extent of human impact on biology within the marine ecosystem. In the future, I hope to influence the regulation, product development, and disposal techniques of manmade chemicals such as PFAS, insecticides, sunscreens, and pharmaceuticals in order to protect the environment and ultimately, us humans.

Rachel on a dive in the Florida Keys during her internship at Mote Marine Laboratories

It took me four years of undergraduate classes, several internships, and two wildly different research projects to figure out the specific area that I wanted to focus on in graduate school. In other words, I got really good at figuring out what I didn’t want to pursue. This would be my greatest piece of advice to someone looking to find their way in science or any profession: try out lots of things, as many as you can! Not only does a range in experience bring about a unique perspective, but you never know what one door might open for you later on down the road.

I also suggest that people learn about the science that interests them in their backyard or community. As a Long Island native, this was easy for me because growing up, I was surrounded by beaches. But even learning about the local plant life or stargazing at night can help curate your specific scientific interests. I believe that having a personal and maybe even emotional relationship with nature and science can instill passion that propels you through all of the more tedious and challenging parts of life. Overall, even if science is just a hobby and not a career end-goal, I think it’s important to find ways to make it accessible at home and never be afraid to ask questions!

Rachel aboard a Norwegian research vessel in the Arctic Ocean during the polar night, researching the photobehavior of copepods, a small crustacean.

Understanding the origins of primates with new fossil evidence

Earliest Palaeocene purgatoriids and the initial radiation of stem primates

Gregory P. Wilson Mantilla, Stephen G. B. Chester, William A. Clemens, Jason R. Moore, Courtney J. Sprain, Brody T. Hovatter, William S. Mitchell, Wade W. Mans, Roland Mundil, and Paul R. Renne

Summarized by Conlan Hale, who is currently a senior at USF planning to graduate in summer 2021 with a B.S. in Geology and B.A. in Mathematics. He plans on becoming a math or science teacher after graduation, and enjoys watching Rays baseball, listening to music, and playing video games when he isn’t finding something new to learn about.

What data were used? Teeth of a new species of purgatoriid mammal (early ancestors of primates) were found in Montana, USA, as well as teeth from other purgatoriid species. The new species signals an earlier date for the spread of the ancestors of primates than originally thought.

Methods: Authors collected tooth and jaw fragments from quarries and the surrounding areas, then analyzed the shapes of the teeth based on 3D model scans.

Results: The researchers discovered several new dental and jaw fragments of Paleocene age (~66 – 56 million years old) leading them to name a new species: Purgatorius mckeeveri (after Frank McKeever, one of the first to sponsor field work in the area where the fossils were found). Based on tooth shape of other specimens from the early Paleocene, researchers were able to classify this new species within the larger family, called the Purgatoriidae. Tooth shape can also be studied to learn about an animal’s diet, and the tooth shape of P. mckeeveri is different from all other purgatoriids in having lower molars with more inflated cusps and rounded crests, as well as having slightly larger molar dimensions than other known species (among other differences). This indicates that this species’ diet was more varied and omnivorous, closer to the early ungulates (ancestors of hoofed mammals) that Purgatorius lived alongside and further from later ancestors of primates, whose diets were primarily fruit, similar to modern lemurs. 

Graph comparing the shapes of molars of Late Cretaceous to Early Paleogene mammals, with P. mckeeveri included. Notice how the Purgatorius species (yellow stars) are closer in diet to the early ungulates (green plus signs) than later plesiadapiforms (other stars).

Why is this study important? This new species pushes back the date of evolution for the ancestors of primates, and they appear from as little as 105 to 139 thousand years after the Cretaceous-Paleogene extinction (~66 million years ago). This means that Purgatorius (and, in turn, other proto-primates) began to thrive across the globe sooner than originally thought. This study also shows how helpful looking at teeth can be as a tool for understanding how and when prehistoric animals lived.

The big picture: These findings show how the ancestors of modern-day primates (and in turn, us humans) adapted and thrived the early Paleogene environment after the loss of the non-avian dinosaurs and many other species. This helps us to further understand both our origins as a species and how speciation as a process works through small changes over time, like the shape of some teeth changing to allow an animal to take advantage of a new food source.

Citation: Wilson Mantilla, Gregory P. et al, 2021, Earliest Palaeocene purgatoriids and the initial radiation of stem primates: Royal Society Open Science 8: 210050.

Student Veterans Research Network (SVRN)

Meet the organizers!

Logan Pearce (founder and co-organizer) is a PhD student at the University of Arizona studying the formation and evolution of planetary systems using a direct imaging technique with Dr. Jared Males. Logan is a US Navy veteran and specialized in nuclear power during her 5 years in the military.

Patty Standring (co-organizer) is a PhD student at the University of Texas at Austin studying the paleoceanography of the southern Gulf of Mexico and the Caribbean using stable isotopes from benthic foraminifera. She is co-advised by Dr. Chris Lowery and Dr. Rowan Martindale. Patty is a US Air Force veteran and was a Dari Linguist during her 10 years in the military.

Rebecca Larson (co-organizer) is a PhD candidate at the University of Texas at Austin studying the formation and evolution of the universe’s first galaxies and is advised by Dr. Steve Finkelstein. Rebecca is a US Air Force veteran and was an Arabic Linguist during her 6 years in the military.

What is SVRN?

We want SVRN to be an informal peer mentorship community for veterans who are working in research or are interested in working in research. We would like it to be an inclusive environment where researchers from different disciplines can network with one another and help each other navigate higher education and establish research careers.

Why did you start the SVRN?

We started this network to aid veterans transitioning from their military career to one involving research and/or higher education. While there is some support for veterans transitioning from military to civilian life, and organizations focused on helping veterans get into higher education, there is a greater emphasis on resources to help veterans get jobs or start businesses. When we leave the military there is not a lot of information provided to us on how to go to graduate school, apply for grants, and get involved in undergraduate research. We wanted to establish a community where individuals from different STEM and non-STEM disciplines around the country can meet, connect, and give each other advice or recommendations on how to go about establishing their post-military careers. Transitioning from the military can be very challenging, especially the longer you served, so we want to present options for veterans that will help them be successful establishing their new career paths and support each other along the way.

What do you expect other student veterans to get out of participating in the SVRN?

We hope that SVRN can be a place of peer mentorship for student veterans to come to ask questions and get advice on how to establish successful research careers. Things like how to get involved in undergraduate research and apply to graduate school, how to build a CV versus writing a resume, best ways to promote their own accomplishments to advance their career goals, how their military skills translate to a research environment, and how to attend conferences to talk about their research. It is also designed to be a community of folks with similar backgrounds and goals, another professional network for making connections across institutions and disciplines. These are all things that you might be able to get from a really good mentor, but because it is coming from a veteran, they understand your past experiences better than a civilian would.

Many veterans join the military so that they can afford to go to college, especially if they are the first person in their family to go into higher education. They are already at a disadvantage because they may not know what types of resources are out there to support them in their journey; things like grants and fellowships that will cover the cost of a graduate education. We also don’t see this as a stagnate peer mentorship network. We would like to see it grow into what it needs to be for student veterans to succeed in research careers.

How can veterans get involved in the network?

Please go to where you can sign up as a member and agree to our code of conduct. After that you will be invited to a Slack workspace where you can introduce yourself and meet other veterans in the network. In addition to that, members that agree will provide their contact information for veterans to reach out to them directly regarding a grant application or applying to a specific institution. Veterans can choose their level of involvement in the organization, but the more we are able to connect with each other, the stronger the network will be for everyone.

You can also follow SVRN on Twitter @SVRN_vets!

Late Cretaceous Aged Sharks Teeth in Iron Age (8th-9th century BCE) Stratigraphic Layers

Strontium and Oxygen Isotope Analysis Reveal Late Cretaceous Sharks Teeth in Iron Age Strata in Southern Levant

Thomas Tütken, Michael Weber, Irit Zohar, Hassan Helmy, Nicolas Bourgon, Omri Lernau, Klaus Peter Jochum and Guy Sisma-Ventura

Summarized by Colton Carrier, who is a senior at University of South Florida studying for his Bachelor of Science in geology.

What data were used: Fossil teeth were found in the City of David, Jerusalem (Figure 1) from two different categories of oceanic fish: bony fish and cartilaginous fish (sharks). The bony fish included Conger conger, a fish residing in deep water at approximately 1000 feet, and Sparus aurata, a coastal water fish. Both fish are extant and currently live in the Mediterranean. What researchers found in another site in Gilead and from City of David, Jerusalem was six Sparus aurata teeth. Researchers also found 10 shark teeth in City of David: teeth of Centrophorus granulosis, a deep-sea shark from the Mediterranean, and Carcharhinus plumbeus, a neustonic (living at the water surface) shark from Red Sea. Because teeth preserve different isotope levels, the extant fish and shark teeth were sampled to construct a database of the strontium and oxygen isotope levels. This data was collected because the shark teeth and other teeth in sediments from the Southern Levant (which is an area of Palestine/Israel) are of different ages and the isotopes preserved can inform us of their true ages. To complement their dataset, they also used a dataset of strontium and oxygen isotope values derived from modern fish: Centophorus granulosis, a deep-sea filter feeding shark, and modern Conger conger, to use as a reference to the shark teeth found.

Methods: First, the researchers identified the teeth and then did isotope analysis on the dental tissue, where they measured the amount of strontium and oxygen isotopes. They then did a screening for diagenetic alteration, or how the teeth were changed through the fossilization process, which consisted of X-ray diffraction, total organic carbon content determination, and LA-ICP-MS which is spectrometry (or shooting lasers at an object and seeing what rebounds back). Using LA-ICP-MS, they were able to perform the isotope analyses. Following this, they did a linear discriminant analysis to match the found fossil teeth to the teeth in the dataset in order to effectively determine the ages of the teeth. 

(A) Potential fish habitats and main bodies of water. (B) Location of Rock Cut Pool, where the fossil teeth were uncovered. (C) Location of fossils discovered in Rock Cut Pool.


Results: The results determined the age of the shark teeth found in the City of David to be of Late Cretaceous (100mya-65mya). They found the bony fish (Sparus aurata) had a lower apatite crystallinity than the shark teeth samples, meaning they were younger. Fluorapatite was the primary phase of mineral, this indicates diagenetic uptake into tooth tissue, which means the shark teeth had a longer burial time/older age. Total Organic Carbon (TOC) content of the shark teeth is 40 times lower than other pelagic sharks like the Great White Shark, and 8 times lower than the bony fish teeth found, meaning the shark teeth have been decaying longer, also lending evidence for the age of the fossil teeth. Trace elements found using spectrometry analysis were uranium and neodymium, which are typical of fossilized shark teeth. With all of the data, the shark teeth were estimated to be approximately 86.5 to 76.3 million years in age. The S. aurata teeth were similar to modern fish.

Why is this study important: Late Cretaceous shark teeth were found in Iron Age layer, 8th-9th century BCE. There is no clear answer as to how the shark teeth got there, so this raises interesting questions as to how humans may have interacted from fossils during this time. 

The big picture: Other animals can interwork fossils into new sediments, just as the authors scientifically assume that humans did to these teeth in the Iron Age. This should be a bias that should be considered in future investigations. This study is also an important interdisciplinary analysis of archaeology and paleontology that may help us begin to learn more about how humans viewed fossils and if they were moved or collected frequently in the past. 

Citation: Tütken, T., Weber, M., Zohar, I., Helmy, H., Bourgon, N., Lernau, O., Jochum, K.P., and Sisma-Ventura, G., 2020, Strontium and Oxygen Isotope Analyses Reveal Late Cretaceous Shark Teeth in Iron Age Strata in the Southern Levant: Frontiers, 

Iris Arndt, Geoscientist

Tell us a bit about yourself
Hi everyone, my name is Iris. Besides science, I enjoy spending time outdoors. I love hiking and (relaxing) bike rides (preferably combined with a bit of regional geology). I also enjoy playing board games and pen and paper role-playing games with friends. It is important to me to volunteer and get involved in my surrounding, such as in early career networks and university boards.

What kind of scientist are you, and what do you do?
I am a PhD student in geosciences working on geochemical analysis of tropical bivalve shells. I analyze geochemical parameters (element ratios e.g. Mg/Ca, Sr/Ca, Ba/Ca and stable isotopes δ18O and δ13C) recorded during growth within the shell, with the goal of reconstructing the paleoenvironmental conditions (such as temperature, salinity, and primary productivity) that prevailed in the reef where the organism grew. I also look at more recent shells to evaluate the structure and geochemistry of shells grown under known environmental conditions.

What is your favorite part about being a scientist, and how did you get interested in science?
I think I was always a curious person. As a child I loved going to natural history and science museums, especially those with interactive elements. My grandfather encouraged my scientific interest a lot and provided me with toys like crystal growing sets and chemistry kits. Ironically, I was particularly interested in extraterrestrial topics. I started studying geosciences because it seemed like an interesting field that combined chemistry, physics, and biology, and because I thought it would be really cool to go on field trips. My enthusiasm for geosciences grew over the course of the first semester, and after my first field trip, I was absolutely certain that geoscience was what I wanted to do. With paleoclimate reconstruction, I found a field that I personally think is important to advance and interesting to work in.

For me, the best thing about being a (geo)scientist is that you get to work on something you really care about and that you have the opportunity to contribute to the understanding of some of the important processes that shape this wonderful planet we live on. I also appreciate being able to work creatively and come up with new ideas and approaches, building on decades of remarkable research. Plus, it’s fantastic to be surrounded by so many cool, open-minded, talented, and nerdy people to share and discuss exciting new findings and approaches with.

How does your work contribute to the betterment of society in general?
The Earth is a very complex system, and modelers are making remarkable progress in predicting its response to climate change. Models are often tested against paleoclimate data and are not (yet) always able to reproduce the parameters identified in paleoclimate studies. Providing paleoclimate data and understanding how Earth’s climate has changed in the past can help to better predict future changes. My work focuses on obtaining high-resolution (up to daily) paleoenvironmental data from shells. These high-resolution climate snapshots can provide insights into short-term climate aspects such as seasonality and frequency of extreme weather events. I believe that climate-related changes in seasonality and extreme weather events are more tangible than, for example, long-term changes in average temperature over decades. Therefore, I hope that continued research in the field of high-resolution paleoclimate reconstruction will provide a basis for making the relevance and effects of upcoming climate change in daily life more apparent to everyone.

What advice do you have for aspiring scientists?
Don’t be afraid to ask questions; the more you ask, the more you learn.

Dare to find your own interpretations and discuss your ideas with colleagues, even if they seem crazy. Maybe you missed something, in which case your interpretation can be adjusted, or maybe you found something super cool that others overlooked.

Stay curious and adventurous. Don’t get discouraged if things don’t turn out as planned. Unexpected results can lead you into the unknown, where new findings are waiting to be discovered.

Using Female Antlers to Understand Caribou Landscape Use

Historical Landscape Use of Migratory Caribou: New Insights From Old Antlers

Joshua H. Miller, Brooke E. Crowley, Clément P. Bataille, Eric J. Wald, Abigail Kelly, Madison Gaetano, Volker Bahn, and Patrick Druckenmille

Summarized by Claudia Johnson, who is a geology major at the University of South Florida. She is currently a senior who will be graduating in Fall 2021. She is interested in environmental geology and may like to work in the National Park Service after graduation. In her free time, she enjoys biking and reading.

What data were used? Caribou are a type of deer where both the males and females shed their antlers, contrary to most other deer where only males exhibit this behavior. The female caribou typically shed their antlers after they calve (i.e., give birth). Due to this timing, these antlers can give insight about the seasonal travels of the caribou. These herds have been living on this land for over 700 years but have only recently started being studied. By analyzing past antlers shed, a fuller picture of their history can be put together. This study looked at two herds in the Arctic National Wildlife Refuge of Alaska: the Central Arctic Herd on the Western Coastal Plain, and the Porcupine Caribou Herd on the Central and Eastern Coastal Plains. Their seasonal ranges are shown in Figure 1.

Methods: These antlers were collected from Alaska and analyzed for a number of variables. First, each antler was categorized based on degree of physical weathering by observing how much of the original bone texture was preserved. The antlers were separated into either recent (post-1980) or historical (pre-1980). Next, rubidium–strontium dating, a type of radiometric dating was performed. When a particular isotope of rubidium decays, it slowly decays into stable (i.e., non-decaying) strontium at an extremely consistent rate. So, by measuring the amount of strontium (⁸⁷Sr/⁸⁶Sr) in the bone, they will be able to determine the age of the antler. This analysis was also used to try to determine differences in herds and location by comparing it to available ⁸⁷Sr/⁸⁶Sr in the environment.

Results: A question posed by the researchers was whether the ⁸⁷Sr/⁸⁶Sr of the antlers would be enough to differentiate the two herds from each other in both recent and historical times. This study was able to do so. Comparing the recent and historic female antlers, no difference was found in the ⁸⁷Sr/⁸⁶Sr of the Porcupine Caribou Herd. However, the Central Arctic Herd had many differences, including an increase in variation and ⁸⁷Sr/⁸⁶Sr from historical to recent antlers. These differences in ⁸⁷Sr/⁸⁶Sr are used to understand landscape use, and these findings coincide with existing biomonitoring records, meaning that this is an accurate way to realize historic landscape use. 

Why is this study important? This study was able to provide data on caribou patterns further into history than had been done before in this area. By being able to analyze antlers hundreds of years old, as well as present-day age, the caribou’s response to environmental changes is clear. This study was able to occur because the Arctic provides excellent conditions for the preservation of antlers. The Arctic also provides a valuable setting to study the effects of climate change due to the acute effects of it that occur there. Only the Central Arctic Herd changed landscape use during the interval of change studied here, which researchers concluded was likely due to development for oil exploration, including roads and pipelines that became intrusive to the herd’s ranges in the 1970s.

The big picture: The Central Arctic Herd’s landscape use was shown to be affected by human influence. This solidifies the knowledge that human alteration of land does indeed affect organisms living in the area. In the ranges of this herd specifically, development for oil exploration has been occurring since the 1960s. It was around this time that the pregnant females had to change their old routes to avoid this infrastructure. These principals can be applied to animals elsewhere to better recognize how infrastructural development is affecting the way they live and could be harming them because they must seek out new places to live. 

Citation: Miller, Joshua H., et al. “Historical Landscape Use of Migratory Caribou: New Insights From Old Antlers.” Frontiers in Ecology and Evolution, vol. 8, 22 Jan. 2021, doi:10.3389/fevo.2020.590837.