
The Chicxulub impact crater, located on the Yucatán Peninsula of México, is best known for being the location of a massive meteor impact causing the Cretaceous/Paleocene (K-Pg) mass extinction event. This is a major mass extinction that led to the extinction of 75% of species on Earth (Gulick et al., 2017). The site has been the subject of debate for many years surrounding the extent of the impact and the environmental fallout of the area since.
Such debates led to a need for further studies and additional information. The main goal of the International Ocean Discovery Program (IODP) and International Continental Scientific Drilling Program (ICDP) Leg 364 was to drill sediments within the impact site to study the peak rings that formed during impact, and how the meteor impact affected the surrounding area. Other expedition objectives included the nature and extent of post-impact hydrothermal circulation, the recovery of life in a sterile zone, and recovery of sediments through the Paleocene/Eocene Thermal Maximum (PETM; Gulick et al., 2017), an event that took place approximately 55 million years ago and was characterized by the Earth heating up by 5–8°C.
In 2016 the Vessel L/B Myrtle began its voyage for the Yucatán continental shelf. A single borehole (Hole M0077A) was drilled into the Chicxulub impact crater and 828.99 meters of cored sediments and rock was recovered from below the seafloor. The recovered sediments and rocks allowed scientists to achieve many of the scientific goals that were established for this expedition.

One of the main goals of the expedition, to core sediments from the peak ring, was successful. Peak rings were formed during the large impact on the Earth’s surface causing the underlying rocks to fracture and overturn onto the impact site. The recovered rocks and sediments allowed scientists to determine that the peak ring is formed from uplifted, shocked, and fractured granitic rocks that overlie older sedimentary rocks. This supported the hypothesis made by Morgan et al. (2016), stating that the dynamic collapse model for peak-ring formation is accurate, and also supported the hypothesis that the rocks are highly porous and fractured from the impact (Gulick et al., 2013). Shipboard studies of microfossils recovered from the sediments indicated that the PETM interval is present in the core sediments, which will allow for the sediments to be studied in greater detail.
Another objective of the expedition was to understand the hydrothermal system surrounding impacts on Earth. Many scientists hypothesize that microbial life starts on Earth at impact sites. Scientists wanted to study this area for signs of early microbial life. Directly after impact Chicxulub was considered to be a sterile zone, as the impact was so sudden, the area around the impact became super heated and all life in the region was instantly wiped out. Scientists have recently found evidence that cyanobacteria may have bloomed a few months after impact (Schaefer et al., 2020). Small trace fossils and other forms of microbes are believed to have come back within a year after the impact.
In conclusion, this drilling expedition is considered to be a great success. Many of the predetermined objectives for the expedition were completed, and lots of other promising data was collected for future studies. Drilling into the impact point of the meteor that caused the Cretaceous/Paleocene (K-Pg) mass extinction was a monumental finding for scientists all over the world. This expedition gave scientists evidence for the formation of peak rings, and allowed for the unique study of how life recovers from such an event.

References
Artemieva, N., and Morgan, J., 2009. Modeling the formation of the K–Pg boundary layer. Icarus, 201(2):768–780. https://doi.org/10.1016/j.icarus.2009.01.021
Collins, G.S., Melosh, H.J., Morgan, J.V., and Warner, M.R., 2002. Hydrocode simulations of Chicxulub crater collapse and peak-ring formation. Icarus, 157(1):24–33. https://doi.org/10.1006/icar.2002.6822
Gulick, S. P., Morgan, J. V., Mellett, C. L., Green, S. L., & Kring, D. A. (2017). Expedition 364 summary. International Ocean Discovery Program.
Gulick, S. P. S., Christeson, G. L., Barton, P. J., Grieve, R. A. F., Morgan, J. V., & Urrutia‐Fucugauchi, J. (2013). Geophysical characterization of the Chicxulub impact crater. Reviews of Geophysics, 51(1), 31-52.
Ivanov, B.A., 2005. Numerical modeling of the largest terrestrial meteorite craters. Solar System Research, 39(5):381–409. https://doi.org/10.1007/s11208-005-0051-0
Kring, D.A., Hörz, F., Zurcher, L., and Urrutia Fucugauchi, J., 2004. Impact lithologies and their emplacement in the Chicxulub impact crater: initial results from the Chicxulub Scientific Drilling Project, Yaxcopoil, Mexico. Meteoritics & Planetary Science, 39(6):879–897. https://doi.org/10.1111/j.1945-5100.2004.tb00936.x
Morgan, J. V., Gulick, S. P., Bralower, T., Chenot, E., Christeson, G., Claeys, P., … & Zylberman, W. (2016). The formation of peak rings in large impact craters. Science, 354(6314), 878-882.
Senft, L.E., and Stewart, S.T., 2009. Dynamic fault weakening and the formation of large impact craters. Earth and Planetary Science Letters, 287(3– 4):471–482. https://doi.org/10.1016/j.epsl.2009.08.033