
Hello! My name is Ella Halbert (she/her/hers) and I’m from Nashville, Tennessee. I am a fourth year Biology and Hispanic Studies major at Oberlin College in Oberlin, OH. I’m interested in disease ecology, epidemiology, and human health. Outside of academics, I love doing anything outdoors, particularly playing sand volleyball and going on hikes. I also sing in an a cappella group and am part of a traditional Japanese Taiko drumming group.
My favorite part about being a scientist is getting to explore questions that interest me. I’m a very hands-on learner, so research has been a great way for me to learn about the world. My most recent research began in the summer of 2022 with a National Science Foundation funded Research Experience for Undergraduates (REU) at Mountain Lake Biological Station (MLBS) in Pembroke, VA. I was drawn to Dr. Chloé Lahondère’s work with mosquito thermal biology and interactions with plants and herpetofauna because of the wide possibility for projects. I joined a project that examines the interaction between Culex territans, a mosquito species present throughout the Northern Hemisphere, and its amphibian hosts. That’s right, this mosquito species feeds exclusively on amphibians (and the occasional reptile), and it couldn’t care less about humans!

More specifically, I studied the interactions between Cx. territans mosquitoes and their frog hosts to determine what diseases they vector in that environment. So far, my work has focused on their potential as vectors of the Batrachochytrium dendrobatidis (Bd) fungus, which causes chytridiomycosis, a deadly disease, in amphibians. The chytrid fungus is responsible for the decline of amphibian populations around the globe, so understanding how this disease is spread in the environment is critical. There is evidence that suggests that when a Cx. territans mosquito lands on a frog, it has the capability to pick up Bd spores and transfer them to its next host. By swabbing the frog population and testing the mosquito population in the same habitat, I was able to compare rates of Bd infection among species and get a better picture of how Bd is spreading in that habitat.

I’ve always loved science, even before I knew what it was. When I was in elementary school, I wanted to know everything there was to know about dinosaurs, and I was curious about why we lost those species 65 million years ago. I loved bugs, and asked for Eyewitness books for my birthday. Over the years, as I was formally introduced to science, I developed a strong desire to know more and to discover how the natural world works.
In high school, I participated in a program called the School for Science and Math at Vanderbilt (SSMV). One day each week, instead of attending my high school courses, I attended lectures and participated in hands-on science projects with my cohort at Vanderbilt University. This four-year long experience opened my eyes to the stunning variety that exists within STEM, and through this program I participated in several summer sessions that emphasized research. The SSMV solidified my interest in science and gave me a platform to engage with subjects that had fascinated me for so long.
I matriculated into Oberlin College in 2019 and declared my Biology major, eager to continue my exploration of the natural world. In the summer of 2021, I joined Professor Mary Garvin’s research lab at Oberlin. I investigated the role of nest mites in overwintering Eastern Equine Encephalitis Virus in Northeast Ohio. With the team, I worked to elucidate the mechanism that allows this disease to persist through the cold, harsh winters of Ohio using DNA and RNA extraction techniques. This experience made me more curious about how ecology and diseases interact and steered my interests towards a summer research internship in the summer of 2022.
My current research is part of an ongoing project at MLBS that seeks to understand how Culex territans, a mosquito species that feeds on cold-blooded hosts, locates and interacts with its hosts. This mosquito’s preference for cold-blooded hosts is intriguing and poorly understood, and by learning how Cx. territans interacts with its hosts, we can provide insight into how mosquito host-seeking behavior evolved. This will ultimately inform current-day disease control strategies regarding mosquito-borne pathogens.
My advice for up and coming scientists is to seek out mentors! Having an experienced scientist in your corner makes a world of difference, and the best research experiences I’ve had were all facilitated by incredible mentors who really took the time to teach me what they knew. The strong interpersonal connections I’ve made in science are what keep me going when an experiment fails or I lose a bunch of data, both of which are annoyingly common occurrences in science! So my best advice is to find people who will support you on the best and worst days of your journey in research!
