The Eastern Kunlun Tectonic Event and How It Intruded in the First Place

Silurian-Devonian Granites and Associated Intermediate-Mafic Rocks along the Eastern Kunlun Orogen, Western China: Evidence for a Prolonged Post-Collisional Lithospheric Extension

Jinyang Zhang Huanling Lei Changqian Ma Jianwei Li Yuanming Pan 

Summarized by Makayla Palm 

What data were used? The goal of this study was to gain insight into how the Kunlun mountain formation and surrounding area were initially formed. The Kunlun Mountain range primarily has an intermediate and mafic composition, with felsic granite intrusions, or dikes. Dikes are intrusions of magma that cut across previously formed layers and are an indicator of a secondary formation process. Depending on the mineral composition, or silica content, of these dikes (or intrusions) they will be either felsic, intermediate, or mafic, with felsic rocks containing the most silica. There are several kinds of secondary igneous rock formations found in the Kunlun called dikes. If the composition of the dike is different from the surrounding rock, this will provide insight into how the dikes formed in the Kunlun and how it can be explained using plate tectonic theory. 

Granite is a commonly found felsic rock in the Kunlun and is formed intrusively (or underground). The mineral contents of the granite can tell the researchers how fast or slow the magma cooled, which will ultimately help answer the question of how the dikes formed. Within the granite, there were zircon crystals present with radioactive uranium decaying into lead. These ratios were recorded in order to estimate ages within the mountain range to determine when the different magma-cooling events took place. To summarize, this paper uses physical samples of the igneous rocks in the area to study mineral composition and isotope data from these rocks, too. 

Methods: The samples that were collected from different rock types in this area were studied under a microscope in order to observe the composition and individual mineral grains. In plate tectonics, there are two kinds of plates: continental plates and oceanic plates. Granite (felsic) comprises less dense continental plates, while basalt (mafic) comprises a denser oceanic plate. In the Kunlun, the researchers observed several granite inclusions surrounded by mafic rock. The isotope ratios of uranium to lead were recorded and radiometrically dated. These data determine if the different intrusions formed at the same time, or if they formed during several events. This would help support or reject the hypothesis they posed that when the continental and oceanic plates collided, creating the Kunlun Mountains, the edge of the oceanic plate broke while bending under the continental plate (the oceanic plate always goes underneath a continental plate, due to higher density).

Results: The radiometric dating of the granite inside the intrusions (the magma formations added after the formation of the surrounding rock) indicated four different formation events, with the earliest taking place 427-414 million years ago (mya) and the latest from 373-357mya. (For more about how radiometric dating works visit Geologic Time.) The variation in the composition of the rocks (felsic, mafic, etc) indicates a complicated tectonic history; along with the multiple events of granitic intrusions, scientists also found ophiolites (oceanic crust that was pushed onto land during an oceanic- continental plate collision), which indicates that a piece of the oceanic plate was pushed up and broken off during the collision. 

A volcano sits on top of igneous rock layers. The volcano is not erupting, but has a magma plume underneath it. There are also intrusive igneous rock formations in the figure. There is a pluton (depending on its size, it is either a stock or batholith) and there are dikes cutting through the rock layers. The rock layers are labeled on the left side, in order of fastest cooling, smaller crystals on the top, to slower cooling, larger crystal sizes on the bottom. The pluton lies at the very bottom of this image with yellow magma.
This figure demonstrates the relationship of cooling rates to crystal sizes. Since the granite of the Kunlun has large crystals, it would be represented by a dike that was set deeper into the rock layers because of longer cooling periods. The lower horizontal layers represent the mafic layers of the Kunlun, which also had large crystals. Figure Citation: Beckett, Megan. Flickr, Siyavula Education , 23 Apr. 2014, https://www.flickr.com/photos/121935927@N06/13598553484/. Accessed 30 June 2022.

Why is this study important? This study looked to test the hypothesis of a broken oceanic plate’s impact on the formation of the Kunlun mountain range and gain more specific knowledge of its origin. By taking inventory of its intrusive rock formations, getting radiometric dating for these intrusions, and noting the differences in mineral compositions, they were able to confirm their hypothesized four magma events. These events represent different periods of magma formation, which confirms the researcher’s hypothesis about oceanic plate breakage during a collision. 

The big picture: Clues from igneous geology, such as large crystal size, rock type, and mineral composition can give researchers details on how large formation events took place. Isotopes within radiometric dating were used to separate events from one another and place them in chronological order. This particular study answered questions about the origin of the Kunlun Orogen, or mountainous landscapes.

Citation: Zhang, Jinyang, Huanling Lei, Changqian Ma,  Jianwei Li,  Yuanming Pan. “Silurian-Devonian Granites and Associated Intermediate-Mafic Rocks along the Eastern Kunlun Orogen, Western China: Evidence for a Prolonged Post-Collisional Lithospheric Extension.” Gondwana Research, vol. 89, Oct. 2021, pp. 131–146., https://doi.org/10.1016/j.gr.2020.08.019.

Leave a Reply

This site uses Akismet to reduce spam. Learn how your comment data is processed.