Climate change mitigation beyond agriculture: a review of food system opportunities and implications
Meredith T. Niles, Richie Ahuja, Todd Barker, Jimena Esquivel, Sophie Gutterman, Martin C. Heller, Nelson Mango, Diana Portner, Rex Raimond, Cristina Tirado, Sonja Vermeulen
Summarized by Taylor Dickson, who is a senior currently majoring in Environmental Science at Binghamton University. They are an environmentally conscious and dedicated student with a hunger for knowledge. Taylor plans on pursuing field experience prior to the continuation of their education. Outside of the realm of education, they enjoy immersing themselves in nature as well as participating in and appreciating the arts.
What data were used? The data utilized in this article are derived from other research articles and compounded to create a bigger picture encompassing all aspects of the food system. This article incorporates important information regarding areas beyond the direct scope of food production. Such areas included are transportation and refrigeration methods, which have greenhouse gas emission consequences.
Methods: Combining and integrating recent research and expanding the exploration of mitigation opportunities by reviewing the relevance and effectiveness of these opportunities in several areas throughout the food system including pre-production and post-production. This study goes below the surface issue to expose the root areas that need to be addressed to create a more sustainable food system.
Results: The results incorporate all aspects of the food system while considering agricultural climate change mitigation. Included in these results are aspects of food production many people may often forget about including the transportation and storage of the food produced. Certain foods have higher emissions associated with them due to the necessary storage required for these food products as well as the circumstances surrounding the growing and harvesting of such products.
Food loss is experienced at all levels of consumption within the food system, including the pre- and post-consumer levels. Annually, about one third of all food products produced on a global scale result in being wasted or lost throughout the production process. At the production level of the food system, a significant source of greenhouse gas emissions is related to the production of synthetic fertilizers used for agricultural practices. This information demonstrates how vast the scope is of the food system discussed.
Greenhouse gas emissions are significantly higher regarding diets rich in animal derived products. This article utilizes other works which provide information and insight that shifting toward a more plant based diet will be beneficial to the environment in lowering greenhouse gas emissions as well as leading to a decrease in human mortality rate accompanied with an increase in health benefits.

Generally, refrigeration is necessary for around half of all food produced. Lower income countries often lose crops at the production stage due to a lack of technologies related to refrigeration and drying methods. Inadequate drying technologies lead to the development of mold and eventual spoiling of food products such as grains. Almost one fifth of the energy utilized by the food system in the United States is from household refrigeration. Transportation related emissions can be reduced primarily by shifting to more efficient modes of transportation. With many food products requiring refrigeration throughout the transportation process, greenhouse gas emissions of refrigerated transportation can reach up to 140% when compared to the emissions associated with non-refrigerated transportation vehicles.
Why is this study important? This study brings together results from previous studies in a cohesive paper which encapsulates information from several areas within the food system. Incorporating the many aspects of the food system in this study provides the reader with a broader understanding of the depth of each component within the system. A single issue of agriculture is broken down into multiple specific and more manageable subcategories where mitigation strategies are indulged. This study goes a step further and provides possible outcomes to the proposed mitigations and discusses potential consequences of these mitigation strategies.
The bigger picture: Climate change is an inevitable universal issue that everyone will face at some point in their lives, and one that demands immediate attention and mitigation. This study exposes the underlying issues of the food system that are significant contributors to climate change. It draws attention to the root causes of greenhouse gas emissions within the food system. The food system is much more than agricultural production. It includes often overlooked aspects related to pre-production and post-production such as packaging, transportation, and storage of the food produced. Although these issues begin at the production level with corporations, consumers hold some power and have the ability to aid mitigation strategies in their success. Some opportunities for these consumers to participate in as described in this article are to adopt a more plant based diet, refraining from over consumption, and understanding that perfection is an illusion and food does not have to be pleasing to look at for it to be nutritious and serve its purpose.
Citation: Niles, M. T. et al. Climate change mitigation beyond agriculture: a review of food system opportunities and implications. Renewable Agriculture and Food Systems 33, 297–308 (2018).