Tell us a bit about yourself
Hi everyone, my name is Iris. Besides science, I enjoy spending time outdoors. I love hiking and (relaxing) bike rides (preferably combined with a bit of regional geology). I also enjoy playing board games and pen and paper role-playing games with friends. It is important to me to volunteer and get involved in my surrounding, such as in early career networks and university boards.
What kind of scientist are you, and what do you do?
I am a PhD student in geosciences working on geochemical analysis of tropical bivalve shells. I analyze geochemical parameters (element ratios e.g. Mg/Ca, Sr/Ca, Ba/Ca and stable isotopes δ18O and δ13C) recorded during growth within the shell, with the goal of reconstructing the paleoenvironmental conditions (such as temperature, salinity, and primary productivity) that prevailed in the reef where the organism grew. I also look at more recent shells to evaluate the structure and geochemistry of shells grown under known environmental conditions.
What is your favorite part about being a scientist, and how did you get interested in science?
I think I was always a curious person. As a child I loved going to natural history and science museums, especially those with interactive elements. My grandfather encouraged my scientific interest a lot and provided me with toys like crystal growing sets and chemistry kits. Ironically, I was particularly interested in extraterrestrial topics. I started studying geosciences because it seemed like an interesting field that combined chemistry, physics, and biology, and because I thought it would be really cool to go on field trips. My enthusiasm for geosciences grew over the course of the first semester, and after my first field trip, I was absolutely certain that geoscience was what I wanted to do. With paleoclimate reconstruction, I found a field that I personally think is important to advance and interesting to work in.
For me, the best thing about being a (geo)scientist is that you get to work on something you really care about and that you have the opportunity to contribute to the understanding of some of the important processes that shape this wonderful planet we live on. I also appreciate being able to work creatively and come up with new ideas and approaches, building on decades of remarkable research. Plus, it’s fantastic to be surrounded by so many cool, open-minded, talented, and nerdy people to share and discuss exciting new findings and approaches with.
How does your work contribute to the betterment of society in general?
The Earth is a very complex system, and modelers are making remarkable progress in predicting its response to climate change. Models are often tested against paleoclimate data and are not (yet) always able to reproduce the parameters identified in paleoclimate studies. Providing paleoclimate data and understanding how Earth’s climate has changed in the past can help to better predict future changes. My work focuses on obtaining high-resolution (up to daily) paleoenvironmental data from shells. These high-resolution climate snapshots can provide insights into short-term climate aspects such as seasonality and frequency of extreme weather events. I believe that climate-related changes in seasonality and extreme weather events are more tangible than, for example, long-term changes in average temperature over decades. Therefore, I hope that continued research in the field of high-resolution paleoclimate reconstruction will provide a basis for making the relevance and effects of upcoming climate change in daily life more apparent to everyone.
What advice do you have for aspiring scientists?
Don’t be afraid to ask questions; the more you ask, the more you learn.
Dare to find your own interpretations and discuss your ideas with colleagues, even if they seem crazy. Maybe you missed something, in which case your interpretation can be adjusted, or maybe you found something super cool that others overlooked.
Stay curious and adventurous. Don’t get discouraged if things don’t turn out as planned. Unexpected results can lead you into the unknown, where new findings are waiting to be discovered.