Nicole Torres-Tamayo, Biologist, Open Science Advocate

Nicole Torres-Tamayo focuses her research on reconstructing the paleobiology of our ancestors through the study of their anatomies.

I am a biologist currently doing my PhD in the field of Paleoanthropology and I am interested in the application of innovative methods to reconstruct key fossils in human evolution. I started my PhD program in Evolutionary Biology and Biodiversity in 2016 and the focus of my research is the origin and evolution of the body shape in the genus Homo, which emerged in Africa around 2 million years ago. In particular, I use quantitative methods to reconstruct missing fossil elements of the torso of extinct hominins to shed light on their lives in the past: behavior, locomotion, diet, etc. and their relationship with the environment (paleobiology).

Fossils are priceless, scarce and unique, and they are what paleoanthropologists have to infer the morphology and function of extinct species. Fossil specimens are usually confined to institutions located in the country where they were excavated, and because of their fragility, they are rarely transported out of these places. For this reason, the emergence of virtual techniques in the last decades has been crucial to expand the work with fossil specimens worldwide: they allow for doing research in a virtual environment, avoiding fossil manipulation and damage, while working thousands of kilometers far from where the specimen is hosted.

Among these virtual techniques,  3D scanning is one of the most widely used data collection methods in Paleontology. The morphology of a bone is captured by means of a 3D surface scanner, and the resulting 3D scans are fused to generate a 3D virtual model of the original bone. In my Ph.D. research, I measure these 3D models using 3D geometric morphometrics to quantify the size and shape variation of different anatomical traits through points called landmarks and semilandmarks. The Cartesian coordinates collected by these points reflect the morphology of the bones and can be analyzed using multivariate statistics.

Original fossil hipbone KNM-ER 3228 (~1.9 m.a, putative Homo erectus) hosted at the National Museum of Nairobi (Kenya).

My Ph.D. research has been funded by the Spanish Ministry of Economy and Competitiveness and by several supporting travel grants (Synthesys program, AMNH collection study grant, Erasmus +, etc.). Thanks to this funding I have travelled to many places to scan skeletal and fossil collections hosted in different institutions. However, I am very aware that this is not the rule in science, at least in Spain, the country where I was born, grew up and started my research career. There are many young researchers across the world who do not have funding to cover their living expenses during the Ph.D. and who need to combine their Ph.D. research with a part-time job out of academy (e.g. coffee shops, restaurants, etc.). It is not surprising that these people cannot afford the expenses to collect data for their own research. I have heard many stories about truncated Ph.D. projects from people who had not access to the data necessary for their own research and who sometimes lack support from their own laboratories. The COVID-19 pandemic is highlighting how necessary research data sharing is for the progress of science, as many people who have not had access to data hosted in their labs or in foreign institutions have suffered a great impact in their investigations as a consequence of mobility restrictions. All these stories have been a turning point in my career and because of them, today I am a huge advocate of open science and research data sharing, which defines my interests and concerns above any discipline.

3D surface scanning is a widely used data collection method and allows for the digitization and virtual conservation of valuable fossil specimens.

One of the greatest advantages of the virtual techniques that I use is the production of virtual models that become part of the virtual collections of the institutions where the original specimens are hosted, contributing to the digital conservation of the specimens in a virtual archive. But also, the virtual nature of these models make them suitable for being shared within the scientific community and the derived datasets (3D coordinates, raw measurements, methodological protocols, etc.) can be hosted in open online repositories (e.g. GitHub, Open Science Framework, Morphosource, etc.) to be available for the scientific community. Sometimes these data are subjected to strict ethical protocols (e.g. clinical data that come from medical institutions) and cannot be shared, but once again, this is not the rule: the majority of the research data that Palaeontologists use can be (and should be) shared with the scientific community, and researchers, especially the young ones, are increasingly willing to do it. But unfortunately, an important part of the Paleo-community is still reluctant to share their research data, something that in my opinion hinders the progress of science and makes it more opaque and inaccessible. For this reason, my Ph.D. research has been bolstered by two incentives. Firstly, I encourage young students to learn why transparency and reproducibility are important beyond any field of research and the role data sharing plays on this. And secondly, I contribute by making my research data and code freely available in open online repositories for researchers who experience restrictions in data collection.

These good scientific practices are not only applicable to Palaeontology; they are valid in all scientific disciplines. Sadly, I encountered many difficulties when promoting research data sharing, most of them under the argument of “we are not going to do this because we have never done it before”. The pioneering computer scientist Grace Murray Hopper (1906-1992) once said: “The hardest thing in the world is to change the minds of people who keep saying, ‘But we’ve always done it this way.’ These are days of fast changes and if we don’t change with them, we can get hurt or lost.” My advice for aspiring scientists is to keep Dr. Hopper’s words in their minds during their entire scientific career.

 

 

Leave a Reply

This site uses Akismet to reduce spam. Learn how your comment data is processed.