The Clues Ancient Glaciers Leave Behind on Mars

Transient post-glacial processes on Mars: Geomorphologic evidence for a paraglacial period

by: Erica R. Jawin, James W. Head, David R. Marchant 

Summarized by: Lisette Melendez

Figure 1: A map of the crater in the midlatitudes on Mars, showing the geologic features that were created due to deglaciation, like gullies and spatulate depressions. These same features can be found in post-glacial environments on Earth!

What data were used? Mars, just like Earth, goes through a cycle of glaciation and deglaciation. The rise and fall of glaciers on Mars is influenced primarily by the planet’s obliquity, or the tilt of its axis. During times of higher obliquity, the planet’s tilt is greater, hence its poles are exposed to more sunlight and the glaciers leave the poles and travel towards the middle of the planet. As the cycle continues and the tilt is lower, the glaciers leave the midlatitudes and migrate towards the poles once again. The period of time where environments are adjusting to deglaciation is known as a paraglacial period, and it comes with a group of identifying features that are well studied here on Earth. This study applies what we’ve learned about the kinds of geologic features that are left behind by glaciers on Earth to the environment on Mars. The area that is left behind by a glacier is known as a glacial deposit. By analyzing images of craters on Mars taken by cameras aboard the Mars Reconnaissance Orbiter, scientists are able to find evidence of paraglacial periods and how long they last on Mars.

Figure 2: A photo of two retreating glaciers in the Antarctic Valley that are leaving behind ridges that are comparable to the ones found on the Martian surface.

Methods:  After choosing a crater in the midlatitudes of Mars, the scientists began breaking down the features found in the images of the crater and mapping out the terrain, as shown in Figure 1. Glaciers leave behind special signatures in the rocks on Earth (e.g., here are some Time Scavengers posts about glacial geology on Earth: glaciers in Connecticut River Valley and glaciers in the Bay of Fundy), and the objective was to identify these same features on Mars. In order to further understand the processes that were occurring in the crater on Mars, analyses of places with the same climate and geologic features on Earth were used! The climate on Mars is arid and freezing, similar to the McMurdo Dry Valleys in Antarctica.

Figure 3: A diagram that shows the process of forming gullies and debris fans (piles of sediment), which can be seen in real-life in the next figure.

Results: Several geologic features that, when found together, are indicative of glaciers migrating away were found in this crater on Mars. Some of these features include ridges becoming increasingly deformed as one looks further downslope, as shown in Figure 2, where the ridges of the glacial deposits in Antarctica are more deformed at the bottom of the picture. Spoon-like holes, called spatulate depressions, were also found on both the Antarctic glacial deposits and the Martian crater, formed by ice weathering away. As glaciers retreat, they often leave behind steep slopes in their wake. These slopes are unstable, and over time, sediment flows downward and builds up on the sides to stabilize the slope, as shown in Figure 3. Gullies, which are a geologic feature formed by the path that the sediment took to travel downward, and the resulting triangular piles of sediment can be found both in the crater on Mars and on Earth, shown side by side in Figure 4.

Why is this study important? This study is important because it increases our understanding of the time frames of climate cycles on Mars, and also highlights the similarities and differences between Mars and Earth. On Earth, paraglacial periods are relatively short, and the features left behind are likely to be eroded away by rainfall, rivers, and vegetation. These features are better preserved on Mars, an extremely cold and dry planet that doesn’t have the same erosive forces.

Figure 4: An example of gullies and debris fans on Mars (left) and on Earth (right).

The big picture:  Understanding the formation of geologic features on Earth is essential to uncovering the geologic history of the rest of our planets. This study showed that several features that form after a glacier migrates away can be found both on Earth and on Mars. The key difference is the time frame: on Earth, the paraglacial period is relatively rapid, while on Mars, it takes place on the scale of millions of years. 

Citation:mJawin, E. R., Head, J. W. & Marchant, D. R. Transient post-glacial processes on Mars: Geomorphologic evidence for a paraglacial period. Icarus 309, 187–206 (2018).

Leave a Reply

This site uses Akismet to reduce spam. Learn how your comment data is processed.