Prolonged Fluvial Activity From Channel-Fan Systems on Mars
by: Gaia Stucky de Quay, Edwin S. Kite, and David P. Mayer
Summarized by: Lisette Melendez
What data were used? In geology, there’s a basic pillar called “The Principle of Uniformitarianism”. It suggests that geologic processes almost always occur in the same manner and intensity now as they did in the past – which is why geologists can look at the rock record to learn more about Earth’s future. In the same vein, many geologic processes that occur on Earth, like landslides, volcanoes, and erosions, can be used to study the same processes on different planets!
This study focused on analyzing pictures of alluvial fans (finger-like deposits that are usually created when running water in arid or semi-arid (e.g., deserts) flows downhill onto a flat surface, as shown in Figure 1) on Mars taken by the Context Camera (CTX) on the Mars Reconnaissance Orbiter (MRO). The scientists also compared Martian alluvial fans to the ones found here on Earth using elevation data collected by the NASA Shuttle Radar Topography Mission. These alluvial fans usually mark the end of a water channel, so they can be used to study ancient water deposits on Mars.

Methods: To study the channels of Mars, the CTX images were converted into digital elevation models, so information like width, slope, and height could be gathered from the data. The valleys on Mars were also measured for how closely they resembled a V-shape. Valleys shaped by rivers have a V-shape, while valleys shaped by other features, like glaciers, tend to have a U-shape.
After gathering all this data, the scientists desired to make an inference about the sediment on Mars, which is too small to be picked up by the camera. So, they turned to places on Earth that had alluvial fans that were very similar to the ones being studied on Mars: the Serra Geral in Brazil, the Great Escarpment in western South Africa, and the Western Ghats in India. These places were ideal parallels for the Martian surface because there’s little to no active tectonic plate movement in the area and the rocks are very well preserved over a long period of geologic time. The big difference is that instead of being placed along mountainsides or plateaus, the slopes that are being studied on Mars are usually along crater rims.
Results: The channels studied on Mars were found to be less concave (curved inwards) and have very steep slopes, indicating a dry environment. The data on concavity and erodibility (likeliness to erode away) on the Martian alluvial fans was most similar to the data found on the South African slopes, which reinforces the idea that the environment was similarly hot and dry.

Why is this study important? This study is another piece of evidence behind the idea that Mars was once full of water, before it underwent serious climate change. Understanding the history of water on Mars is crucial to understanding what conditions are necessary for life to evolve (which can help paleontologists learn about the first life on Earth, too!). It’s also interesting to note how we can learn more about planets that are millions of miles away by looking right here on Earth!
The big picture: More than a billion years ago, water used to run freely on the surface of Mars, creating channels and alluvial fans. Scientists use images of the geologic features that remained after water was no longer on the Martian surface to learn more about the history of the Red Planet and the potential implications for human exploration. Learning more about the surface and climate of Mars is necessary for understanding the hazards and potential resources that would be encountered on a crewed mission to Mars.
Citation: Stucky de Quay, G., Kite, E. S., & Mayer, D. P. ( 2019). Prolonged fluvial activity from channel‐fan systems on Mars. Journal of Geophysical Research: Planets, 124, 3119– 3139. https://doi.org/10.1029/2019JE006167