What is your favorite part about being a scientist? My favourite part about being a scientist is the constant thrill of discovery, and understanding more about the world we live in. I have always enjoyed learning new things, particularly about the natural world, and a great part about science is that it provides an environment full of people who are also just as interested in learning and understanding as I am.
An aspect of palaeontology that I find most exciting is that palaeontologists cannot simply study these animals in ‘the wild’ to see how they were behaving and interacting with their environment when they were alive. Instead, palaeontology is sort of like puzzle solving, where you need to look for clues in the fossil record to piece together the bigger picture of what these animals were like. It often astonishes me just how much detail researchers are able to pars out from the fossil record with new computational techniques, and paint an incredible picture of the diversity and complexity of the history of life on earth.

What do you do? My current research focuses on the extinct reptile Champsosaurus, which lived from about 90 to 55 million years ago in what is now North America and Europe. These animals would have lived in freshwater rivers, and at a glance would have looked a lot like modern crocodiles, although they’re quite distantly related to one another. I recently completed my Masters degree studying Champsosaurus at Carleton University in Ottawa, Canada, where I used medical X-ray computed tomography scanning (usually just called CT or CAT scanning) to describe the skulls of these animals in fine detail. This technology allows us to look inside the specimens without damaging them, just like how a doctor may use CT scanning to look inside a person without having to operate. With CT scanning, I described the bones of the skull of Champsosaurus in 3D, and identified some features that had never been seen before, such as an unusually structured middle-ear bone that was specialized to support the skull, rather than detect sound vibrations.
It also allowed me to describe the cavities that once held the brain, inner ear, nerves, and blood vessels, structures that had never been described before in much detail. I then used statistical comparative techniques to compare the inner ear of Champsosaurus (the organ that gives us the sense of balance and the ability to sense movement) to a variety of modern and extinct reptiles in order to get an idea of how Champsosaurus may have been moving when they were alive.
I found that the brain was typical of other closely related reptiles, and that the inner ear was very similar to modern aquatic reptiles, which provided new evidence that Champsosaurus spent most of its time in the water. Since graduating, I have been using computer modeling techniques to describe the geographic range of Champsosaurus in North America during the latest Cretaceous period to give us a better idea of where these animals may have lived at that time, even in areas were there are no sediments of the right age to preserve their fossils.


How did you get interested in your current research project? My interest in Champsosaurus arose through a combination of a few things. Since I was a kid, I’ve always been interested in natural history, evolution, and life on Earth, but as with most kids, I had a particular interest in dinosaurs. When I began my Masters degree, I was entering the first phase of my life were I could finally study dinosaurs. I was enamoured with the topic that I was initially working on, describing the skull of the famous armoured dinosaur Ankylosaurus using CT scanning. Unfortunately, when we CT scanned the specimen about 4 months into my program, the specimen was just too large and dense for us to get usable data, and we couldn’t see any structures inside the skull at all. This meant that I needed to find a new project in order to finish my degree. My supervisors and I discussed several topics, most of which were also on dinosaurs, and my initial urge was pursue another dinosaur-related project. However, I was also intrigued by a similar project to my initial Ankylosaurus work, describing the skull of a small crocodile-like reptile called Champsosaurus using CT scanning. This was the first time I’d even heard of Champsosaurus, but after reading into the variety of topics more, I decided to go with Champsosaurus because I was fascinated with understanding the anatomy, evolution, and behaviour of these extinct animals, particularly because they are a relatively understudied animal when compared to some of their contemporaries like the dinosaurs and crocodilians. I was also excited by the tools I would get to learn in this project (working with CT data, and using computers and stats to describe shape variation in the inner ear). Although I am absolutely still interested in broadening my research into dinosaur palaeontology down the road, I’m glad I decided to go with the Champsosaurus for my Masters because it has given me an avenue to pursue exciting research in the future (and it also taught me the valuable lesson that palaeontology is far more than just dinosaurs!).

If you are writing about your research: What are your data and how do
you obtain your data? In other words, is there a certain proxy you work
with, a specific fossil group, preexisting datasets, etc.? For my Masters thesis research on the skull of Champsosaurus, the data I worked with primarily consisted of CT scans of specimens that were already in museum collections. The bulk of my work involved CT scans of two well-preserved skulls housed at the Canadian Museum of Nature in Ottawa, Canada, but for my analysis of the inner ear of Champsosaurus, I used CT data from 60 different species of modern and extinct reptiles and birds to compare the shape of their inner ears with Champsosaurus. These CT data came from museums and universities around the world, and I acquired the data either directly from other researchers, or from online databases like Morphosource (https://www.morphosource.org/) and Digimorph (http://digimorph.org/), two great resources for accessing CT data. Once I acquired the data, my work mostly took place on computers where I digitally reconstructed the inner ears of these animals so I could compare them with Champsosaurus.
How did you learn about the palaeoVC? What do you take away from the
conference? I first heard about the PalaeoVC through my primary Masters supervisor, and a few other graduate students at my university. The first year of the conference I unfortunately wasn’t able to present because I was finishing up my degree, but this year I was able to, so I jumped at the chance. I thoroughly enjoyed the ease of the presentation submission, and I was happy to see the wide diversity of interesting projects happening around the globe. One aspect that impressed me was how interested the community was in engaging in conversation with one another, even though everything was online, and how supportive and positive people were of each other and their work.
How does the corona crisis affect your research and academic life? This summer, I’ve been working for the Canadian Museum of Nature as a student research assistant, and I’m fortunate enough that my work (scanning and transcribing field notes, and segmenting fossil CT data for the museum’s palaeontologists) can be done from home. In terms of my own research projects, the pandemic has certainly slowed things down. Some projects that I am involved in have been completely frozen until museums reopen, but it’s a necessary sacrifice to help flatten the curve. Those projects that have not frozen have slowed dramatically, but this is inevitable given that everyone’s lives have changed significantly since closures were put in place. One thing that I do miss is getting to see my friends and colleagues in person, but technology has thankfully allowed us all to keep in touch and caught up with each other, even if it’s not ideal.

What advice would you give to aspiring scientists and other early
career researchers? For aspiring scientists, I would tell them to follow their passions and go down an avenue that they would want to pursue for their career. If there is something you love doing, and you can make a career of it, it’s the best of both worlds. I’d also add that they shouldn’t be afraid to reach out to researchers, professors, or current students if they have any questions on applying to universities, or how they can enter the academic and research fields. Most people are happy to answer these questions, and aspiring scientists shouldn’t have to feel like they’re walking in the dark when trying to find out how to get started.
For other early career researchers, I would first and foremost ask them to please take care of themselves. I think we all know that academia naturally encourages people to push for a heavy workload, which is certainly a good thing in that it fosters an environment full of passionate and driven people. But if you work yourself to the point that you’re no longer getting enjoyment from what you’re doing, then you need to take a break. Most researchers and academics went into their field because they love doing what they do, and you want to make sure that you can hold on to that enthusiasm and excitement so that you can continue to enjoy your work for the rest of your career.
Follow Thomas’s updates on Twitter.