Laura Speir, Paleoclimatologist

Laura Speir sitting in front of the instrument they use to analyze oxygen isotope ratios to understand climatic changes. Much of the work Laura does involves lab work as opposed to field work.

I study changes in past climate using fossils, focusing on climate 500-450 million years ago during an event called the Great Ordovician Biodiversification Event (or GOBE). The GOBE represents one of the largest and longest diversification events (where a huge number of new species evolved) in earth history. Many scientists, including myself, are trying to understand the role of climate on the GOBE. Leading into the GOBE, the earth was very warm, warmer than we would expect for animal life. During the peak of the GOBE, the oceans appear to have cooled to temperatures slightly warmer than what we see today.

For my research, I use microfossils known as conodonts. Conodonts are extinct animals that are similar to hagfish or lampreys. We usually don’t find the whole conodont animal, but rather their “teeth” are left behind. We use these “teeth” (known as conodont elements) as a proxy for understanding climate. This is because conodont elements preserve the changes in different oxygen elements (known as isotopes) within the ocean. The ratio between these oxygen isotopes (16O and 18O) can be measured and a temperature can be calculated. While some scientists will collect rocks that contain conodont elements themselves, I receive conodont elements from paleontologists who have done previous research using conodont elements.

So, why do scientists like myself study past climates? By studying climates in the distant past, we can better understand how our climate is changing now. Scientists who create climate models use past climate data to better their models and studying periods of time when the earth was vastly different than our own allows climate modelers to test the limits of their models.

Outside of research, I am a teaching assistant for the University of Missouri geology field camp. Many geology programs require a field course where the students spend some amount of time learning how to recognize different rocks within the field and how to place them onto a map. The University of Missouri takes students to the Wind River Basin near Lander, Wyoming to learn these skills, as well as a fantastic trip to the Yellowstone and Grand Teton National Parks. I was a student at this field camp myself back in 2016 and have been a teaching assistant there for the past two field seasons. The geology in this region is absolutely stunning and makes a wonderful field area for our students to learn stratigraphy and mapping. Geology gave me the opportunity to travel across the country (and to Spain and Portugal, as well).

One of my favorite things about being a scientist is having the opportunity to share what I do with a variety of people. I participate in many outreach events and tell the general public about paleontology. Many students are not exposed to geology or paleontology in school, but these outreach events allow students (and their families) to learn about the earth. While I was never exposed to outreach events such as the ones I participate in now, I was fortunate enough to take earth science courses during high school, as well as an introductory geology course at my local community college. Looking back, however, I was always interested in the processes that governed the earth, from rocks to meteorology to biology.

There is no one true path to entering a science field. Many of us started out wanting to enter different field (I myself originally wanted to go into film). Community college is a great place to start your journey, particularly if you are unsure what field you want to major in. If you are in college, take a variety of courses. If you find a science course that you enjoy, don’t be afraid to take similar classes. Find a field that you enjoy doing and pursue it.

Laura Speir at Grand Teton National Park during the University of Missouri Geology Field Camp during the 2019 field season. Laura and other staff members take students to Yellowstone and Grand Teton National Park to learn about the regional geology of Wyoming.

On being non-binary in science

Recently, I came out as non-binary. I do not identify as male or female, but somewhere between the two. While there are a growing number of scientists who identify as LGBTQIA+, finding other scientists in your field can be quite difficult. However, there is a growing effort for science organizations to provide opportunities for LGBTQIA+ people and many organizations are adjusting their policies to protect against gender identity discrimination. This is a huge step forward, as some states and cities do not provide such protections. Some scholarships and awards that I had previously applied for or considered applying for are women-specific, as women are, generally, poorly represented in science. However, some of the organizations I have talked to are willing to open their applications for non-binary/agender/genderfluid people, as they are also poorly represented in science.

As a grad student, my peers are generally accepting of my gender identity. My professors (and most importantly, my advisor) have accepted my gender identity and have made every effort to adjust their language regarding my pronouns (they/them). The occasional slip up does happen (even by me!) and I do my best to correct people. My biggest worry is how my gender identity will affect my future career. Will the hiring committee be accepting or will they look the other way because I do not conform to their ideas of gender? As I continue my journey, my hope is to find more scientists like myself at different points in their careers and learn how they have overcome the obstacles they have faced.

Leave a Reply

This site uses Akismet to reduce spam. Learn how your comment data is processed.