How did you get interested in science in general?
I am one of the rare people (not so rare in paleontology) that has always known what I wanted to do in life. When I was a kid, I was obsessed with dinosaurs. When I got a bit older this expanded to paleontology in general as I was spending my summers in Northern Michigan collecting fossil corals (Petoskey Stones) along the shore of Lake Michigan and reading every book I could about fossils.
When I got to high school, I started to think about paleontology as a career and called the nearest Natural History Museum (University of Michigan) asking to talk to someone. I ended up speaking with Tom Baumiller who was very generous with his time and chatted with me on the phone, invited me to the museum, and got me working as a volunteer with the museum collections. I came to the University a year later and Tom had research projects waiting. I ended up conducting research for four years at the museum working with Tom on predation in the fossil record and Dan Fisher on stable isotopes in mastodons. This provided insight into the process of science as well as strong mentorship. I spent countless hours in Tom’s lab along with his graduate students (Forest Gahn, Asa Kaplan, and Mark Nabong), which helped to formulate my own interests and provided casual advice regarding graduate school and academia.
What, exactly, do you do?
The aspect of paleontology that really piques my interest is thinking about the weirdness of fossil organisms. Seeing the remains of animals in the past that look nothing like animals today, inspires wonder of these ancient environments and also provides a clear mystery to be solved. This is what originally interested me in dinosaurs, but as I delved deeper into paleontology it was clear that things got stranger when I looked further into the past.

As far as weird goes, nothing beats echinoderms (relatives of sea urchins and sea stars). As you may know from previous Time Scavenger posts by the stellar young scientists that contribute to this blog (Maggie, Jen, and Sarah), early echinoderms are extraordinarily diverse and have many perplexing features. To explore this, I examine the diversity of features and forms (disparity). This method allows the visualization of evolutionary dynamics from the perspective of how different rather than how many. For my dissertation, I examined crinoid disparity during the Early Paleozoic focusing on a few key questions. What controls the diversity of features in a community of animals? What is the role of weird things in disparity patterns through time? And, are rare animals objectively weird? I compiled a large database of crinoid characteristics largely by studying museum collections and was able to address these questions. It turned out that rare animals weren’t all that objectively weird compared to common things. However, weird animals (outliers based on their characteristics) played a large role in understanding the evolution in form through time, especially during shifts in environmental conditions.
I have since expanded my research to examine trends in disparity in all echinoderms. This is a gargantuan project in that it requires some working knowledge of the many different groups of echinoderms. It has been one of the most rewarding tasks scientifically as it has given me the chance to sit down with many different echinodermologists and discuss the group they know best. From these discussions, I have compiled a huge character list that I along with my research students have used to examine trends in body plan evolution within echinoderms. This is still ongoing research, but I can start asking questions regarding the nature of the Cambrian Explosion and the Great Ordovician Biodiversification Event. We can explore patterns of disparity at the level of a phylum and how that parses out to the different groups within it. And, we can start to examine how different forms evolved and what limits the range of feature seen in echinoderms.
How does your job contribute to the understanding of evolution or climate change?
I work at the University of West Georgia, which is a regional comprehensive University. This means that a large portion of my time is devoted toward teaching our diverse student body. I teach a steady mix upper level geology courses and non-major introductory classes. I spend significant amounts of time in my upper level courses discussing evolutionary processes and the nature of science. I feel paleontology is a perfect place to discuss biases, uncertainty, and how scientists actually try to understand the world around them.
This is even more important in my introductory classes. I have a very casual lecture style that fosters student confidence to ask questions. I focus on discussing geologic time, evolution, and climate change. In addition, we talk about why these issues are important and explore the political implications. Politics are a tricky area in the current climate, but if I can get students to include a candidate’s scientific literacy into their decision making process when they are voting, I have done my job.
What methods do you use to engage your students?

I find in my classes getting students out of the classroom and into the field is the most effective way to communicate. Students can make direct observations and see that the real world is much more complicated than what they see in the classroom. Field experiences foster bonds between the student and instructors that makes students more comfortable asking questions. In addition, field work creates more cohesive student groups that then are more likely to work together and elevate the entire class while they are back on campus.
What advice would you give to young aspiring scientists?
I think my advice varies depending on who I am addressing so I will list a few things:
Amateur Paleontologists
Take advantage of local fossil groups, they are a wealth of knowledge and experience! If you discover something that you don’t recognize when you are collecting fossil, they can help. Also, feel free to contact professional paleontologists regarding your questions. I have research projects collaborating with or using specimens collected by avocational paleontologists. Also, remember that professional paleontologists have tons of responsibilities such that it may take a while to reply, we can’t go out into the field as often as we would like, and publications based on your material may take a fair amount of time.
Aspiring Paleontologists
Learn as much as possible: read books and articles, go to meetings of local fossil groups (if there are any nearby), and visit museums. Contact professionals with your questions, but be respectful of their time (if you email during exam week that email might get lost!). Most paleontologists would be thrilled to meet an enthusiastic aspiring paleontologist, especially because we were also in that position.
Graduate Students
Publish your work, publish side projects, establish collaborations and publish them. Obviously, make sure the publications are high-quality science, but put yourself in the best position possible. Also, try to squash down the feelings of competition. I know students are all competing for the same grants and ultimately the same jobs. However, if you collaborate or help other students in your department or subfield, that elevates everyone. If one of your friends gets a grant, awesome. They will do more research and make your department/subfield look better. If they get a job that means you will have someone to collaborate with when you get a job! Being supportive and collaborative will make graduate school better. These friendships can also lead to exciting opportunities for you in the future. For instance, I am currently planning a joint trip with one of my graduate school buddies (Kate Bulinski) and recently received a box of Cambrian echinoderm plates form another (Jay Zambito).
Students on the Job Market
Apply to everything. I was aiming for a research position, but ended up at a teaching-focused school. I didn’t think it would make me happy, but I love it here. Don’t limit your options when you may not know what you really want. Also, take time to do the things that clear your head- meditate, jog, hike, etc. Make sure your application is the best possible and then the rest is out of your hands. Likely some of the things that a search committee is looking for are outside of your control so you might as well go for a walk with your dog.
Young Professionals
The first few years on the job are really exhausting, but a few things will make it easier. Maintain your contacts and collaborations. Pick projects that won’t be quite as time intensive. Establish mentors in your department and in your field that can give advice when you need it (thanks Bill Ausich and Tim Chowns). Avoid getting bogged down in things that are not considered in your job performance (mentors will help here). Finally, keep doing the things that clear your head. If you are busy these are often the first things that get left behind, but they are important so keep doing them.
References:
Deline, B. 2015. Quantifying morphological diversity in early Paleozoic echinoderms. In Zamora, S. and Rábano, I. (eds.), Progress in Echinoderm Palaeobiology, Cuademos del Museo Geominero, 19. Instituto Geológico y Minero de España, Madrid, p. 45-48.
Sumrall, C.D. and Deline, B. 2009. A new species of the dual-mouthed paracrinoid Bistomiacystis and a redescription of the edrioasteroid Edrioaster priscus from the Upper Ordovician Curdsville Member of the Lexington Limestone. Journal of Paleontology, v. 83, no. 1, p. 135-139, doi: 10.1666/08-075R.1
Sumrall, C.D., Sprinkle, J. and Guensburg, T.E. 1997. Systematics and paleoecology of late Cambrian echinoderms from the western United States. v. 71, no. 6, p. 1091-1109.
One thought on “Brad Deline, Paleontologist”