Sarah Z. Gibson, Paleoichthyologist and Science Communicator

I am a paleoichthyologist, meaning that I am a paleontologist who specializes in fishes. In particular, my research is focused on the evolutionary history of early ray-finned fishes from freshwater deposits in North America; many of the fishes from these Triassic and Early Jurassic deposits remain undescribed and poorly understood with regard to their relationships to other fishes, as well as the roles they play in their respective environments. This time period is interesting to me because fish at this time were much different than what we see today. Much fish biodiversity had gone extinct at the end-Permian extinction event, and so lineages that persisted into the Mesozoic evolved into new habitats and niches. I focus on changes and trends in the morphology among several different groups of ray-finned fishes, and how these fishes evolved to exploit novel ecological niches at a turbulent time in Earth’s history.

I also serve as an editor for the PLOS Paleontology Community blog! While not directly related to my research, science communication is an avenue of my work as a scientist that allows me to branch out into other topics within the community and highlight new, exciting research that is available to everyone through Open Access! I enjoy getting to talk to other paleontologists about their research and projects, as well as help paleontologists and paleo enthusiasts access new information, resources, and useful tools.

This fish is Hemicalypterus weiri, a deep-bodied fish with unusual scraping teeth that may have been used to scrape algae or other attached organisms from a rocky substrate. Hemicalypterus is found in the Upper Triassic Chinle Formation of Utah, and is possibly the oldest representative of herbivory in fishes.

My research revolves directly around examination of anatomy and morphology of fishes from the orders Semionotiformes, Redfieldiiformes, Dapediiformes, and other closely-related ray-finned fishes. I collect most of my data through a microscope, examining specimens from museum collections or specimens that were collected in the field and prepared by great volunteers from the Utah Friends of Paleontology. I take high-resolution photographs of specimens so that I can examine and measure the morphological features of the fossils, and I also collect data from drawing specimens using a camera lucida. If you are unfamiliar with a camera lucida, it is a drawing tube microscope attachment that makes it possible to see a blank paper and my hand juxtaposed upon the specimen visible through the microscope oculars. I then trace the specimen I am seeing in the microscope onto the paper, which is actually placed next to the specimen though it looks like I am drawing directly on the specimen. The result is a drawing interpretation of the anatomy. This technique is old, but I still use it because it really forces me to closely examine and interpret what I am seeing. As my PhD advisor would say, “What you do not draw, you do not see.”

The data I collect may be written into a formal, detailed anatomical description, if the specimens represent a new species. That description can be used by other paleontologists to evaluate and compare to their own specimens. It also gets coded into a matrix of morphological characters, which includes other species that may or may not be closely related. I then analyze the completed matrix of morphological characters using phylogenetic software. The output is a hypothesis of evolutionary relationships of the group of fishes I am focusing on for the project, which I can then use to address evolutionary questions, such as the number of times a specific anatomical or morphological feature may have independently evolved, or assessing a role these fishes may have played in their respective ecosystems.

My research is part of a larger collaborative effort to assess the biodiversity of the Early Mesozoic of North America at a time in Earth’s history that saw major changes to the planet’s geography, several mass extinctions, and faunal turnover events that lead to the opening of novel ecological niches for both aquatic and terrestrial organisms. By looking at how species respond to catastrophic events, we may be more able to understand how modern biodiversity may evolve and adapt to modern changes that are being accelerated by human impacts.

My favorite part about being a scientist is realizing how vast and amazing this world and its history are! There is just so much to learn and see, and really, even with how far we have come as a society, there is still so much we don’t know! I love nerding out with fellow paleontologists, because frankly, how could you not love doing something this fun? It’s exciting! I also love discovering a new species, or uncovering a new specimen when doing fossil preparation. Just knowing that I am the first human to lay eyes on this little fish that died over 200 million years ago is very humbling.

My advice to young scientists would be to not get discouraged when you fail. I say when, not if, because failure is inevitable. Everyone fails, absolutely everyone. Every scientist you know has had grants rejected, papers revised, ideas spurned, etc. We all start somewhere! The key is persistence! Take the criticisms you will receive (and again, you will receive criticism at some point or another, so don’t despair!), and just use it to make your work better and more solid. Don’t forget that you are doing something totally awesome and worthwhile.

On a more practical note, practice reading and writing scientific papers. The scientific jargon can be a huge barrier to students and young scientists, but is so important when it comes time to share your own work with others. So read, read, read! Learn how to interpret their results. There is no excuse to not have access to scientific papers because Open Access research is ever-growing. Check out the weekly Fossil Friday Roundup (shameless plug!) which highlights new Open Access paleontology-related papers!

Follow Sarah’s blog here, for more information and updates on her research and check out the PLOS Paleo Community here, for awesome open access paleontology.

One thought on “Sarah Z. Gibson, Paleoichthyologist and Science Communicator

Leave a Reply