Impact of climate change on New York City’s coastal flood hazard: Increasing flood heights from the preindustrial to 2300 CE
Andra J. Garner, Michael E. Mann, Kerry A. Emanuel, Robert E. Kopp, Ning Lin, Richard B. Alley, Benjamin P. Horton, Robert M. DeConto, Jeffrey P. Donnelly, David Pollard
Data and Methods: This study employs various models to understand the future impact of climate change from tropical cyclones. These cyclones create storm surges, which are abnormal rises in water that often lead to flooding. To model storm surge heights in the past (1970-2005), this study uses data from about 5,000 storms. For predicting future storm characteristics for the next few centuries, the study assesses about 12,000 storms. Researchers use storm data to run a variety of simulations that have varying parameters. For example, they can modify the trajectories and wind speeds of tropical cyclones, and the frequencies and intensities of storms to model different scenarios.
They then used the storm models to quantify potential flooding in New York City by combining estimates of storm surge heights with anticipated sea level rise. Such changes in sea level are governed by mass loss of glaciers and ice sheets, thermal expansion, ocean dynamics, and water storage on land. Again, they modified these parameters in a number of models to predict flooding from future storm surges. This study focuses on two specific scenarios from previously developed models: Representative Concentration Pathway (RCP) 4.5 and 8.5. Various modifications to RCP4.5 and RCP8.5 are used to make predictions about the future of storm-related flooding in New York City.

Results: This group found that the maximum wind speeds of tropical cyclones in the future are much greater than the maximum speeds we see today. From this they conclude that future tropical storms will be much more intense, and the storm surges that reach New York City will be greater. They also found that the tracks of tropical cyclones will shift with time, and the density of tracks near New York City will increase.
For the next century, this study estimates sea level rise for New York City to be between 0.55 and 1.4 meters (Figure 1). From 2100 to 2300, they predict possible rises of 1.5 to 5.7 meters. If they increase the potential ice loss from the Antarctic Ice Sheet, those values drastically increase to a maximum sea level rise of 15.7 meters by 2300. Remarkably, these values simply estimate relative sea level rise without the added effect of storm surge. Toward the end of this century (2080 to 2100), flood heights are expected to be 0.7 to 1.4 meters higher than modern New York City floods (Figure 2). By 2300, storm surges could cause floods that are 2.4 to 13.0 meters higher than modern values.

Why is this study important? At present, an increase in the intensity and frequency of storms would have a negative effect on coastal zones like New York City. However, in a future with higher sea levels, the effects of tropical cyclones and storm surges could be catastrophic. Continued emissions of greenhouse gases, rising temperatures, and consequential melting of ice will create a future with significantly higher sea levels. As storms develop and create surges of higher water, their resulting floods will be larger than anything New York City–or any other city–has seen before. Comprising of nearly 50 million built square meters and over 8 million people, this coastal city is a climate change target. The hazards associated with sea level rise in such a large and populous area are unimaginable. This study only looked at the effects on this one city; but there are places around the world that risk losing everything to climate change and sea level rise.
The big picture: Sea level will rise as human-driven climate change continues to warm global temperatures and melt ice sheets. The combined effects of higher sea levels and more intense tropical cyclones will create storm surges with the potential for catastrophic flooding in major cities like New York.
Citation: Garner, A.J., Mann, M.E., Emanuel, K.A., Kopp, R.E., Lin, N., Alley, R.B., Horton, B.P., DeConto, R.M., Donnelly, J.P., and Pollard, D., 2017. Impact of climate change on New York City’s coastal flood hazard: Increasing flood heights from the preindustrial to 2300 CE. PNAS. DOI: 10.1073/pnas.1703568114
2 thoughts on “What does climate change mean for New York City?”