New echinoderm fossils from Anticosti Island, Quebec

Late Ordovician (Hirnantian) diploporitan fauna of Anticosti Island, Quebec, Canada: implications for evolutionary and biogeographic patterns

Sarah L. Sheffield, William I. Ausich, Colin D. Sumrall

What data [were] used? New fossils found from Anticosti Island in Quebec, Canada.

Methods: New fossils of poorly understood echinoderm (relatives of sea stars) fossils discovered from Upper Ordovician (445-443 million years ago) rocks were analyzed and compared with middle Silurian (434-428 million years ago) to better understand biogeographic and evolutionary trends.

Results: The Holocystites Fauna is a group of poorly-understood diploporitan echinoderms (a term that just means they breathe out of sets of double pores found on their body) that scientists assumed to have only lived in the midcontinent of the United States (e.g., Tennessee, Iowa, Indiana, etc.) during a very specific time within the Silurian. New fossil species Holocystites salmoensis, however, tells us that they actually also lived during the Late Ordovician of Canada, which extends their known range nearly 10-15 million years!

This fossil of Holocystites salmoensis represents a very important new datapoint that helps scientists understand poorly known echinoderm transitions from the Late Ordovician to the Silurian. A. The mouth area of Holocystites salmoensis. B. a close up of the diplopore respiratory structures. C. A line drawing of the mouth area of Holocystites salmoensis. D-E. Other fossils of Holocystites salmoensis and (F) an unidentified diploporitan found in the same deposit (Sheffield et al., 2017).

Why is this study important? So at first glance, this paper might not seem so important-it’s just one new fossil of a relatively rare group of echinoderms. What is so important about this is the time in which these fossils were found. Rocks from the Upper Ordovician, during which this fossil was found, are very rare because the ocean levels were very low. Earth was in an ice age, so a lot of ocean water was taken up in glacial ice. When sea levels are low, fewer rocks are preserved; therefore, fossil data from low sea levels are rare. Evolutionary transitions of fossils from the Ordovician through the Silurian aren’t well understood. Now that we’ve found evidence of Ordovician Holocystites, we can infer a lot more about when and how these organisms evolved.

The big picture: Crucial information about how life on Earth evolved is often hard to find from times like the Late Ordovician. Actively searching for rocks during these times and identiying fossils from within them can tell us a lot about how past life responded to mass climate change (like ice ages and significant warming periods). It can also tell us a lot about how organisms expanded and shrunk their biogeographic range. Even one new fossil, like the one identified in this paper, can change a lot about what we think we knew!

Citation: Sheffield, S.L., Ausich, W.I., Sumrall, C.D., 2017. Late Ordovician (Hirnantian) diploporitan fauna of Anticosti Island, Quebec, Canada: implications for evolutionary and biogeographic patterns: Journal of Canadian Earth Sciences, v. 55, p. 1-7, doi: 10.1139/cjes-2017-0160

2 thoughts on “New echinoderm fossils from Anticosti Island, Quebec

Leave a Reply

This site uses Akismet to reduce spam. Learn how your comment data is processed.